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ABSTRACT
Device-free gesture tracking is an enabling HCI mechanism for

small wearable devices because fingers are too big to control the
GUI elements on such small screens, and it is also an import-
ant HCI mechanism for medium-to-large size mobile devices be-
cause it allows users to provide input without blocking screen view.
In this paper, we propose LLAP, a device-free gesture tracking
scheme that can be deployed on existing mobile devices as soft-
ware, without any hardware modification. We use speakers and
microphones that already exist on most mobile devices to perform
device-free tracking of a hand/finger. The key idea is to use acoustic
phase to get fine-grained movement direction and movement dis-
tance measurements. LLAP first extracts the sound signal reflected
by the moving hand/finger after removing the background sound
signals that are relatively consistent over time. LLAP then meas-
ures the phase changes of the sound signals caused by hand/finger
movements and then converts the phase changes into the distance
of the movement. We implemented and evaluated LLAP using
commercial-off-the-shelf mobile phones. For 1-D hand movement
and 2-D drawing in the air, LLAP has a tracking accuracy of 3.5
mm and 4.6 mm, respectively. Using gesture traces tracked by
LLAP, we can recognize the characters and short words drawn in
the air with an accuracy of 92.3% and 91.2%, respectively.

CCS Concepts
•Human-centered computing→ Gestural input;
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1. INTRODUCTION

1.1 Motivation
Gestures are natural and user-friendly Human Computer Interac-

tion (HCI) mechanisms for users to control their devices. Gesture
tracking allows devices to get fine-grained user input by quantit-
atively measuring the movement of their hands/fingers in the air.
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Device-free gesture tracking means that user hands/fingers are not
attached with any device. Imagine that if a smart watch has the
device-free gesture tracking capability, then the user can adjust time
in a touch-less manner as shown in Figure 1, where the clock hand
follows the movement of the finger. Device-free gesture tracking
is an enabling HCI mechanism for small wearable devices (such
as smart watches) because fingers are too big to control the GUI
elements on such small screens. In contrast, device-free gesture
tracking allows users to provide input by performing gestures near
a device rather than on a device. Device-free gesture tracking is
also an important HCI mechanism for medium-to-large size mobile
devices (such as smartphones and tablets) complementing touch
screens because it allows users to provide inputs without block-
ing screen view, which gives user better visual experience. Fur-
thermore, device-free gesture tracking can work in scenarios where
touch screens cannot, e.g., when users wear gloves or when the
device is in the pocket.

Figure 1: Device-free gesture tracking

Practical device-free gesture tracking systems need to satisfy
three requirements. First, such systems need to have high accur-
acy so that they can capture delicate movements of a hand/finger.
Due to the small operational space around the mobile device, e.g.,
within tens of centimeters (cm) to the device, we need millimeter
(mm) level tracking accuracy to fully exploit the control capability
of human hands. Second, such systems need to have low latency
(i.e., respond quickly), within tens of milliseconds, to hand/finger
movement without user feeling lagging responsiveness. Third, they
need to have low computational cost so that they can be implemen-
ted on resource constrained mobile devices.

1.2 Limitations of Prior Art
Most existing device-free gesture tracking solutions use cus-

tomized hardware [1–4]. Based on the fact that wireless signal
changes as a hand/finger moves, Google made a customized chip
in their Soli system that uses 60 GHz wireless signal with mm-
level wavelength to track small movement of a hand/finger [1],
and Teng et al. made customized directional 60 GHz transceivers
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in their mTrack system to track the movement of a pen or a fin-
ger using steerable directional beams [2]. Based on the fact that
light reflection strength changes as a hand/finger moves, Zhang et
al. made customized LED/light sensors in their Okuli system to
use visible light to track hand/finger movement [3]. Based on vis-
ion processing algorithms, Leap Motion made customized infrared
cameras to track hand/finger movements [4]. Recently, Nandak-
umar et al. explored the feasibility of using commercial mobile
devices to track fingers/hands within a short distance. They pro-
posed fingerIO, which uses OFDM modulated sound to locate the
fingers with accuracy of 8 mm [5].

1.3 Proposed Approach
In this paper, we propose a device-free gesture tracking scheme,

called Low-Latency Acoustic Phase (LLAP), that can be deployed
on existing mobile devices as a software (such as an APP) without
any hardware modification. We use speakers and microphones
that already exist on most mobile devices to perform device-free
tracking of a hand/finger. Commercial-Off-The-Shelf (COTS) mo-
bile devices can emit and record sound waves with frequency
higher than 17 kHz, which are inaudible to most people [6]. The
wavelength of sound waves in this frequency range is less than 2
cm. Therefore, a small movement of a few millimeters will sig-
nificantly change the phase of the received sound wave. Our key
idea is to use the acoustic phase to get fine-grained movement dir-
ection and movement distance measurements. LLAP first extracts
the sound signal reflected by the moving hand/finger after remov-
ing the background sound signals that are relatively consistent over
time. Second, LLAP measures the phase changes of the sound sig-
nals caused by hand/finger movements and then converts the phase
changes into the distance of the movement. LLAP achieves a track-
ing accuracy of 3.5 mm and a latency of 15 ms on COTS mobile
phones with limited computing power. For mobile devices with two
or more microphones, LLAP is capable of 2-D gesture tracking that
allows users to draw in the air with their hands/fingers.

1.4 Technical Challenges and Solutions
The first challenge is to achieve mm-level accuracy for the meas-

urement of hand/finger movement distance. Existing sound based
ranging systems either use the Time-Of-Arrival/Time-Difference-
Of-Arrival (TOA/TDOA) measurements [7, 8] or the Doppler shift
measurements [9, 10]. Traditional TOA/TDOA based systems re-
quire the device to emit bursty sound signals, such as pulses or
chirps, which are often audible to humans as these signals change
abruptly [7, 8]. Furthermore, their distance measurement accuracy
is often in the scale of cm, except for the recent OFDM phase based
approach [5]. Doppler shift based device-free systems do not have
tracking capability and can only recognize predefined gestures be-
cause Doppler shift can only provide the coarse-grained measure-
ment of the speed or direction of hand/finger movements due to the
limited frequency measurement precision [9,11,12]. In contrast, to
achieve mm-level hand/finger tracking accuracy, we leverage the
fact that the sound reflected by a human hand is coherent to the
sound emitted by the mobile device. Two signals are coherent if
they have a constant phase difference and the same frequency. This
coherency allows us to use a coherent detector to convert the re-
ceived sound signal into a complex-valued baseband signal. Our
approach is to first measure the phase change of the reflected sig-
nal, rather than using the noise-prone integration of the Doppler
shift as AAMouse [13] did, and then convert the phase change to
the movement distance of a hand/finger. Compared with traditional
TOA/TDOA, our approach has two advantages: (1) human inaudib-
ility, and (2) mm-level tracking accuracy. Compared with Doppler

shift, our approach has three advantages: (1) tracking capability, (2)
low latency, and (3) ability to track slow or small movements of a
hand/finger. We have lower latency than Doppler shift based sys-
tems because Doppler shift requires Fast Fourier Transform (FFT),
which needs to accumulate at least 2048 samples (translated to 42.7
ms) to process, whereas we only need to accumulate 16 samples
(translated to 0.3 ms). In other words, Doppler shift based systems
only respond to hand/finger movement every 42.7 ms whereas our
LLAP system can respond to hand/finger movement every 0.3 ms.
Note that in practice, we may need to accumulate more samples
due to the hardware limitations of mobile devices, such as 512
samples (translated to 10.7 ms) on smartphones. We can deal with
slow hand/finger movement because LLAP can precisely measure
the accumulated slow phase changes over time. We can deal with
small hand/finger movement because LLAP can precisely measure
small phase changes that is less than a full phase cycle. In contrast,
Doppler-based approaches cannot detect slow or small movements
due to their limited frequency resolution, as we show in Section 3.

The second challenge is to achieve two dimensional gesture
tracking. Although LLAP can precisely measure the relative move-
ment distance of a hand, it cannot directly measure the absolute dis-
tance between the hand and the speaker/microphones, and therefore
it is hard to determine the initial hand location that is essential for
two dimensional tracking. To address this challenge, we use mul-
tiple Continuous Waves (CW) with linearly spaced frequencies to
measure the path length. We observe that sound waves with dif-
ferent frequencies have different wavelengths, which leads to dif-
ferent phase shifts even if they travel through the same path. To
determine the path length of the reflected sound wave, we first isol-
ate the phase changes caused by hand/finger movement and then
apply Inverse Discrete Fourier Transform (IDFT) on the phases of
different sound frequencies to get the TOA of the path. By identi-
fying the TOA that has the strongest energy in the IDFT result, we
can determine the path length for the sound reflected by the mov-
ing hand/finger. Thus, our approach can serve as a coarse-grained
initial position estimation. Combining the fine-grained relative dis-
tance measurement and the coarse-grained initial position estima-
tion, we can achieve a relatively accurate 2-D hand/finger tracking.

1.5 Summary of Experimental Results
We implemented and evaluated LLAP using commercial mobile

phones without any hardware modification. Under normal indoor
noise level, for 1-D hand movement and 2-D drawing in the air,
LLAP has a tracking accuracy of 3.5 mm and 4.57 mm, respect-
ively. Under loud indoor noise level such as playing music, for 1-D
hand movement and 2-D drawing in the air, LLAP has a tracking
accuracy of 5.81 mm and 4.89 mm, respectively. Experimental res-
ults also show that LLAP can detect small hand/finger movements.
For example, for a small single-finger movement of 5 mm, LLAP
has a detection accuracy of 94% within a distance of 30 cm. Using
gesture traces tracked by LLAP, we can recognize the characters
and short words drawn in the air with an accuracy of 92.3% and
91.2%, respectively.

2. RELATED WORK
Sound Based Localization and Tracking: TOA and TDOA

ranging systems using sound waves has a good ranging accuracy
of a few centimeters because of the slower propagation speed com-
pared to radio waves [7, 8, 14–16]. However, such systems often
either require specially designed ultrasound transceivers [14] or
emit audible probing sounds, such as short bursty sound pulses or
chirps [7, 8, 15]. Furthermore, most existing sound based tracking
systems are not device-free as they can only track a device that



transmits or receives sound signals [7, 8, 10, 13–15, 17]. For ex-
ample, AAMouse measures the Doppler shifts of the sound waves
transmitted by a smart phone to track the phone itself with an accur-
acy of 1.4 cm [13]. In comparison, our approach is device-free as
we use the sound signals reflected by a hand/finger. The problems
that we face are more challenging because the signal reflected by
the object has much weaker energy compared to the signal travelled
through the Line-Of-Sight (LOS) path.

Sound Based Device-Free Gesture Recognition: Most sound
based device-free gesture recognition systems use the Doppler ef-
fect of the sound reflected by hands [9, 11, 12]. Such systems do
not have tracking capability and can only recognize predefined ges-
tures because Doppler shift can only provide the coarse-grained
measurement of the speed or direction of hand/finger movements
due to the limited frequency measurement precision [9,11,12]. An-
other system, ApenaApp, uses chirp signals to detect the changes
in reflected sound that is caused by human breaths [18]. ApenaApp
applies FFT over the sound signals of a long duration to achieve
better distance resolution at the cost of reducing the time resolu-
tion. Thus, ApenaApp’s approach can only be used for long term
monitoring for periodical movements (such as human breaths) that
have frequency lower than 1 Hz. There are keystroke recognition
systems that use the sound emitted by gestures, such as typing on a
keyboard or tapping on a table, to recognize keystrokes [19–21] or
handwriting [22]. Compared with such systems, we use inaudible,
rather than audible, sound reflected by hands/fingers.

In recent pioneer work parallel with us, Nandakumar et al. pro-
posed an OFDM based finger tracking system, called fingerIO [5].
FingerIO achieves a finger location accuracy of 8 mm and also
allows 2-D drawing in the air using COTS mobile devices. The
key difference between LLAP and fingerIO is that LLAP uses CW
signals rather than OFDM pulses. The phase measured by CW
signals is less noisy due to the narrower bandwidth compared to
OFDM pulses. This allows LLAP to achieve better tracking ac-
curacy. Furthermore, the complex valued baseband signal extracted
by LLAP can potentially give more information about hand/finger
movements than the TOA measurements from fingerIO. However,
the CW signal approach used by LLAP is more susceptible to the
interference of background movements than the OFDM approach.

RF Based Gesture Recognition: Radio Frequency (RF) signals,
such as Wi-Fi signals, reflected by human bodies can be used for
human gesture and activity recognition [23–28]. However, as the
propagation speed of light is almost one million times faster than
the speed of sound, it is very difficult to achieve fine-grained dis-
tance measurements through RF signals. Therefore, existing Wi-
Fi signal based gesture recognition systems cannot perform fine-
grained quantification of gesture movement. Instead, they recog-
nize predefined gestures, such as punch, push, or sweep [27,29,30].
When using narrow band RF signals lower than 5 GHz, the state-
of-the-art tracking systems have a measurement accuracy of sev-
eral cm [31, 32]. To the best of our knowledge, the only RF based
gesture recognition systems that achieve mm-level tracking accur-
acy are mTrack [2] and Soli [1], which uses 60 GHz RF signals.
The key advantage of our system over mTrack and Soli is that we
use speakers and microphones that already exist on most mobile
devices to perform device-free tracking of a hand/finger.

Vision Based Gesture Recognition: Vision based gesture re-
cognition systems use cameras or light sensors to capture fine-
grained gesture movements [3, 4, 33–35]. For example, Okuli
achieves a localization accuracy of 7 mm using LED and light
sensors [3]. However, such systems have a limited viewing angle
and are susceptible to lighting condition changes [3]. In contrast,
LLAP can operate while the device is within the pocket.

3. MEASURE 1-D RELATIVE DISTANCE
In this section, we present our approach to measuring the one-

dimensional relative movement distance of a hand/finger, which
consists of three steps. First, we use a coherent detector to down
convert the received sound signal into a complex-valued baseband
signal. Second, we measure the path length change based on the
phase changes of the baseband signal. Third, we combine the phase
changes at different frequencies to mitigate the multipath effect.
Before we introduce these three steps, we analyze the limitations of
the Doppler shift based approach, which is used by most existing
sound-based gesture recognition systems [8, 9, 11–13] and present
the advantages of our phase based approach over the Doppler shift
based approach.

3.1 Limitations of Doppler Shift Based Dis-
tance Measurement

As a moving object changes the frequency of the sound waves
reflected by it, by measuring the frequency changes in the re-
ceived sound signal, which is called Doppler shift, we can calcu-
late the movement speed of the object. The traditional Doppler shift
measurement approach, which uses Short-Time Fourier Transform
(STFT) to get the Doppler shift, is not suitable for device-free ges-
ture recognition due to its low resolution and highly noisy results.

First, the resolution of STFT is limited by the fundamental con-
straints of time-frequency analysis [36]. The STFT approach first
divides the received sound data into data segments, where each
segment has equal number (say 2,048) of signal samples, and then
performs Fast Fourier Transform (FFT) on each segment to get the
spectrum of the given data segment. With a small segment size, the
frequency resolution is very low. For example, when the segment
size is 2,048 samples and the sampling rate is 48 kHz, the frequency
resolution of STFT is 23.4 Hz. This corresponds to a movement
speed of 0.2 meters per second (m/s) when the sound wave has a
frequency of 20 kHz. In other words, the hand must move at a speed
of at least 20 cm per second to be detectable by the STFT approach.
Note that improving the frequency resolution is always at the cost
of reducing the time resolution [36]. For example, if we use a larger
segment size with 48,000 samples to get the frequency resolution of
1 Hz, this will inevitably reduce the time resolution of STFT to one
second as it takes one second to collect 48,000 samples when the
sampling rate is 48 kHz. Distance measuring schemes with such a
low time resolution are unacceptable for interactive inputs because
they can only measure the moving distances of a hand/finger at a
one-second time interval. Note that the resolution for STFT cannot
be improved by padding short data segments with zeros and per-
form FFT with a larger size, as done in [13], because zero padding
is equivalent to convolution with a sinc function in the frequency
domain. Figure 2 shows the STFT result for a hand that first moves
toward and then moves away from the microphone, where each
sample segment contains 2,048 samples and is padded with zeros
to perform FFT with size of 48,000. Although the frequency resol-
ution seems to be improved to 1 Hz when we perform FFT with a
larger size, the high energy band in the frequency domain (red part
in the spectrogram) still spans about 80 Hz range, instead of being
around 1 Hz. Most of the small frequency variations are buried in
this wide band and we can only roughly recognize a positive fre-
quency shift from 4 to 5.2 seconds and a negative frequency shift
from 6 to 7.5 seconds.

Second, Doppler shift measurements are subject to high noises
as shown in Figure 2. In device-based tracking systems, such as
AAMouse [13], where the sound source or sound receiver is mov-
ing, it is possible to use the frequency that has the maximal energy
to determine the Doppler shift. In device-free tracking systems,



Figure 2: Doppler shift of hand movements

however, the frequency with the highest energy, which is plotted
as the white line around 18 kHz in Figure 2, does not closely fol-
low the hand movement because the sound waves reflected by the
moving hand are mixed with the sound waves traveling through the
Line-Of-Sight (LOS) path as well as those reflected by static ob-
jects. Furthermore, there are impluses in the Doppler shift measure-
ments due to frequency selective fading caused by the hand move-
ment, i.e., the sound waves traveling from different paths may get
cancelled with each other on the target frequency when the hand is
at certain positions.

3.2 Phase Based Distance Measurement
Because of the above limitations of Doppler shift based distance

measurement, we propose a phase based distance measurement ap-
proach for sound signals. As Doppler shift in the reflected signal
is caused by the increase/decrease in the phase of the signal when
the hand moves close/moves away, the idea is to treat the reflected
signal as a phase modulated signal whose phase changes with the
movement distance. Except for fingerIO that uses OFDM phase [5],
no prior work has used phase changes of sound signals to measure
movement distance, although the phase of RF baseband signal has
been used for measuring the movement distance of objects [2, 23].
Compared to the Doppler shift, the phase change of the baseband
signal can be easily measured in the time domain. Figure 3 shows
the In-phase (I) and the Quadrature (Q) components of the base-
band signal obtained from the same sound record that produces the
spectrogram in Figure 2. From Figure 3(a), we observe that the I/Q
waveforms remain static when the hand is not moving and vary like
sinusoids when the hand moves. Combining the in-phase (as the
real part) and quadrature (as the imaginary part) components into
a complex signal, we can clearly observe patterns caused by hand
movement. Figure 3(b) shows how the complex signal changes dur-
ing a short time period from 4.04 to 4.64 seconds while the hand
moves towards the microphone. We observe that the traces of the
complex signal are close to circles on the complex plane.

In essence, the complex signal is a combination of two vectors
in the complex plane: we call a static vector and a dynamic vector.
The static vector corresponds to the sound wave traveling through
the LOS path or reflected by static objects, such as walls and tables.
This vector remains quasi-static during this short time period. The
dynamic vector corresponds to the reflection caused by the moving
hand. When the hand moves towards the microphone, we observe
an increase in the phase of the dynamic vector, which is caused
by the decrease in length of the reflected path. As the phase of
the signal increases by 2π when the path length decreases by one
wavelength of the sound wave, we can calculate the distance that
the hand moves via the phase change of the dynamic vector. As-
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Figure 3: Baseband signal of sound waves

suming that the speed of sound is c = 343 m/s, the wavelength of
sound signals with frequency f = 18 kHz is 1.9 cm. We observe
that the complex signal moves by about 4.25 circles, which cor-
responds to an 8.5π increase in phase values in Figure 3(b). Thus,
the path length changes by 1.9 × 4.25 = 8.08 cm during the 0.6
second shown in Figure 3(b). This is equivalent to hand movement
distance of 4.04 cm considering the two-way path length change.
Furthermore, we can determine whether the hand is moving toward
or moving away from the microphone by the sign of the phase
changes. Note that it is important to use both the I and Q com-
ponents because the movement direction information is lost when
we only use a single component or the magnitude [23].

This phase based distance measurement approach has three ad-
vantages over the Doppler shift based approach. First, the accuracy
is much higher because by directly measuring the phase changes,
we eliminate the noise-prone steps of first measuring the Dop-
pler shift and then integrating the Doppler shift to get the dis-
tance changes. Second, the latency is much lower because the phase
measurement can be conducted on a short data segment with only
hundreds of samples. Third, the speed resolution is much higher
because the phase measurement can track small phase changes
and slow phase shifts. For example, phase based measurement can
easily achieve 2.4 mm distance resolution, which corresponds to
a phase change of π/4 when the wavelength is 1.9 cm. Further-
more, the information is much richer because phase measurements
provide more information than what we get from STFT. For ex-
ample, the phase difference at different frequencies can be used for
localizing the hand as discussed in Section 4.

3.3 LLAP Overview
We now give an overview of LLAP when operating on a single

sound frequency. Without loss of generality, we assume that the
sampling frequency of the device is 48 kHz. We have tested our
implementation under other sampling frequencies, e.g., 44.1 kHz,



and obtained similar results as in 48 kHz. LLAP uses Continuous
Wave (CW) signal of A cos 2πft, where A is the amplitude and f
is the frequency of the sound, which is in the range of 17 ∼ 23 kHz.
CW sound signals in this range can be generated by many COTS
devices without introducing audible noises [6].

We use the microphones on the same device to record the sound
wave using the same sampling rate of 48 kHz. As the received
sound waves are transmitted by the same device, there is no Carrier
Frequency Offset (CFO) between the sender and receiver. There-
fore, we can use the traditional coherent detector structure as shown
in Figure 4 to down convert the received sound signal to a base-
band signal [37]. The received signal is first split into two identical
copies and multiplied with the transmitted signal cos 2πft and its
phase shifted version − sin 2πft. We then use a Cascaded Integ-
rator Comb (CIC) filter to remove high frequency components and
decimate the signal to get the corresponding In-phase and Quadrat-
ure signals.

cos  2π f t

— sin  2π f t

CIC

CIC

I 

Q 

A cos 2π f t

Figure 4: System structure

3.4 Sound Signal Down Conversion
Our CIC filter is a three section filter with the decimate ratio of

16 and differential delay of 17. Figure 5 shows the frequency re-
sponse of the CIC filter. We select the parameters so that the first
and second zeros of the filter appear at 175 Hz and 350 Hz. The
pass-band of the CIC filter is 0 ∼ 100 Hz, which corresponds to the
movements with a speed lower than 0.95 m/s when the wavelength
is 1.9 cm. The second zero of the filter appears at 350 Hz so that
the signals at (f ± 350) Hz will be attenuated by more than 120
dB. Thus, to minimize the interferences from adjacent frequencies,
we use a frequency interval of 350 Hz when the speaker transmits
multiple frequencies simultaneously. To achieve better computa-
tional efficiency, we do not use a frequency compensate FIR filter
after the CIC.
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Figure 5: Frequency response of CIC filter

CIC filter incurs low computational overhead as they involve
only additions and subtractions. Therefore, we only need two multi-
plications per sample point for the down conversion, i.e., multiply-
ing the cos 2πft and − sin 2πft with each received sample. For
48 kHz sampling rate, this only involves 96,000 multiplications per
second and can be easily carried out by mobile devices. After the
down conversion, the sampling rate is decreased to 3 kHz to make
subsequent signal processing more efficient.

To understand the digital down conversion process, we consider
the sound signal that travels through a path p with time-varying
path length of dp(t). This received sound signal from path p can be

represented asRp(t) = 2A′p cos(2πft−2πfdp(t)/c−θp), where
2A′p is the amplitude of the received signal, the term 2πfdp(t)/c
comes from the phase lag caused by the propagation delay of
τp = dp(t)/c and c is the speed of sound. There is also an ini-
tial phase θp, which is caused by the hardware delay and phase
inversion due to reflection. Based on the system structure shown in
Figure 4, when we multiply this received signal with cos(2πft),
we have:

2A′p cos(2πft− 2πfdp(t)/c− θp)× cos(2πft)

= A′p
(
cos(−2πfdp(t)/c− θp) + cos(4πft− 2πfdp(t)/c− θp)

)
.

Note that the second term has a high frequency of 2f
and will be removed by the low-pass CIC filter. There-
fore, we have the I-component of the baseband as Ip(t) =
A′p cos(−2πfdp(t)/c−θp). Similarly, we get the Q-component as
Qp(t) = A′p sin(−2πfdp(t)/c− θp). Combining these two com-
ponents as real and imaginary part of a complex signal, we have the
complex baseband as follows, where j2 = −1:

Bp(t) = A′pe
−j(2πfdp(t)/c+θp). (1)

Note that the phase for path p is φp(t) = −(2πfdp(t)/c + θp),
which changes by 2π when dp(t) changes by the amount of sound
wavelength λ = c/f .

3.5 Phase Based Path Length Measurement
As the received signal is a combination of the signals traveling

through many paths, we need to first extract the baseband signal
component that corresponds to the one reflected by the moving
hand so that we can infer the movement distance from the phase
change of that component, as we will show next. Thus, we need
to decompose the baseband signal into the static and dynamic vec-
tor. Recall that the static vector comes from sound waves travel-
ing through the LOS path or the static surrounding objects, which
could be much stronger compared to the sound waves reflected
by hand. In practice, this static vector may also vary slowly with
the movement of the hand. Such changes in the static vector are
caused by the blocking of other objects by the moving hand or
slow movements of the arm. It is therefore challenging to sep-
arate the slowly changing static vector from the dynamic vector
caused by a slow hand movement. Existing work in 60 GHz tech-
nology uses two methods, Dual-Differential Background Removal
(DDBR) and Phase Counting and Reconstruction (PCR), to remove
the static vector [2]. However, the DDBR algorithm is susceptible
to noises and cannot reliably detect slow movements, while PCR
has long latency and requires strong periodicity in the baseband
signal. Thus, both of these algorithms are not suitable for our pur-
pose.

We use a heuristic algorithm called Local Extreme Value De-
tection (LEVD) to estimate the static vector. This algorithm op-
erates on the I/Q component separately to estimate the real and
imaginary parts of the static vector. The basic idea of LEVD is in-
spired by the well-known Empirical Mode Decomposition (EMD)
algorithm [38]. We first find alternate local maximum and min-
imum points that are different more than an empirical threshold
Thr, which is set as three times of the standard deviation of the
baseband signal in a static environment. These large variations in
the waveform indicate the movements of surrounding objects. We
then use the average of two nearby local maxima and minima as the
estimated value of the static vector. Since the dynamic vector has a
trace similar to circles, the average of two extremes would be close
to the center. Figure 6 shows the LEVD result for a short piece of
waveform in Figure 3(a). LEVD pseudocode is in Algorithm 1.
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The advantage of LEVD lies in its robustness to movement speed
changes. On one hand, by following the averages of the extreme
points, it can quickly trace static vector changes caused by arm
movements when the hand moves fast. On the other hand, the es-
timated vaule of the static vector remains constant when there are
no movements or the movements are slow. For example, during the
time period of 5.5 to 6 seconds in Figure 6, the normalized value
of in-phase component is around -100, which is far away from the
actual real part of the static vector. If we use a long term averaging
algorithm to estimate the static vector, the estimated real part of the
static vector will slowly drift towards -100. In contrast, the static
vector estimation of LEVD keeps stable as there are no valid ex-
treme points during this period.

After finding the static vector using LEVD, we subtract it from
the baseband signal to get the dynamic vector. We then use the
phase φd(t) of the dynamic vector to determine the path length
change. We first unwrap the phase φd(t) and the path length change
during the time period 0 ∼ t is given by:

d(t)− d(0) = −φd(t)− φd(0)

2π
× λ (2)

where d(t) is the path length from the speaker reflected through the
hand to the microphone, and λ = c/f is the sound wavelength.
When the hand and the microphone/speaker are on the same line,
the movement distance of the hand is (d(t) − d(0))/2 when it
moves towards the speaker, as shown in Figure 4. Note that the
distance calculation can be made on a small data segment, e.g.,
segments with only hundreds of samples. This allows us to respond
to hand movements with very low latency, such as 15 ms.

3.6 Multipath Effect Mitigation
Although LEVD can mitigate the effect of static multipaths by

subtracting the static vector, there are dynamic multipaths when the
hand moves. A path that the sound wave travels is called static if its
length does not change as the hand moves and dynamic if its length
changes as the hand moves. An example dynamic path is from the
speaker to the hand, and then to a nearby table, and finally to the
microphone. Therefore, sometimes there are multiple dynamic vec-
tors and these dynamic vectors may have different phases. This will
result in complex signal trajectories, as shown in Figure 7(a). Be-
cause of dynamic multipaths, it is difficult to determine the actual
phase change from superimposed dynamic vectors.

We use frequency diversity to mitigate the multipath effect. The
wavelengths of different sound frequencies are different. Thus, the
phases of the same multipath component are different under dif-
ferent frequencies, and the phase changes under different frequen-
cies are also different. The dynamic vectors at different frequencies
are combinations of the same set of dynamic paths under different
phase offsets. As the multipath components are combined differ-
ently in different frequencies, we can combine the measurements

Algorithm 1: Local Extreme Value Detection Algorithm
Input: One baseband signal component X(t) = I(t) or Q(t),

t = 0 . . . T
Output: Real or imaginary part of the estimated static vector S(t),

t = 0 . . . T

1 Initialize n: number of extrema, S(0): initial estimation
2 E(n): extrema list
3 for t = 1 to T do
4 /*Find extreme points that meet our requirements*/
5 if X(t) is a local maxima or minima then
6 Compare X(t) with the last extreme point E(n) in the list;
7 if Both X(t) and E(n) are local maxima/minima, and the

value of X(t) is larger/smaller than E(n) then
8 E(n)← X(t);
9 end

10 if One of X(t) and E(n) is maxima and the other is minima,
and |X(t)− E(n)| > Thr then

11 n← n+ 1;
12 E(n)← X(t);
13 end
14 end
15 /*Update the static component estimation using exponential

moving average*/
16 S(t)← 0.9× S(t− 1) + 0.1× (E(n− 1) + E(n))/2;
17 end
18 return S(t)
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Figure 7: Multipath effect

obtained from different frequencies to mitigate the multipath ef-
fect. To get the baseband signal at different frequencies, we trans-
mit sounds at multiple frequencies at the same time. The coherent
detection structure can be applied on each frequency to obtain one
complex baseband signal for each frequency. We remove the in-
terference between adjacent frequencies by carefully selecting the
parameters of the CIC filter and the frequency interval. Thus, each
frequency can be measured independently. After getting the phase
of dynamic vectors at different frequencies, we can obtain the dis-
tance change curve over time using the wavelength corresponding
to each frequency. We combine the results of different frequencies
using linear regression. Our approach is based on two observations.
First, the measured distance change should be the same for all fre-
quencies when there is no multipath effect. Second, the distance
should change linearly during a short time period, e.g., 10 ms, as
the movement speed is almost constant during that short period.
Therefore, we use linear regression to find the best line that fits
all distance change curves obtained from different frequencies. For
those frequencies that have abnormal distance estimation results
due to multipath effects, the regression error will be large. We then
remove frequencies with large regression errors to achieve a better
linear regression result using the rest of frequencies.



3.7 The Impact of Hand Size
The size of the moving object, i.e., the human hand, cannot be

ignored when it is close to the speakers and microphones. Human
hands have an average length of 15 cm [39]. Thus, different parts
of the hand have significant differences in path lengths when we
aim at mm-level measurement accuracy. As shown by Figure 7(b),
when the hand moves by a distance of a, the path reflected by the
center of the hand has path length change of 2a. However, path re-
flected by the top of the hand will have smaller path length change,
especially when the hand is close to the microphone. As the dy-
namic vector in the received signal is a mixture of all paths reflec-
ted by the hand, the measured path length change will be smaller
than the expected value. In our experiments, this type of error in-
creases when the hand is closer to the microphone. As shown by
our experiments in Section 6.2, when the hand is 20 cm away from
the microphone, the distance measurement error is 3.5 mm; when
this distance reduces to 5 cm, the measurement error increases to
6.8 mm. Errors are mostly caused by the impact of the hand size as
we consistently underestimates the movement distance. Note that
such small error can be compensated by the user when we provide
realtime feedbacks to the user. Therefore, we do not use a special
algorithm to compensate the underestimation.

4. MEASURE 2-D ABSOLUTE DISTANCE
In this section, we present our 2-D tracking algorithm using

sound signals. We first use a delay profile based method to determ-
ine the path length so that we can obtain a coarse-grained hand
position. We then combine the coarse-grained hand position with
the fine-grained path length change to enable 2-D tracking.

4.1 Delay Profile Based Path Measurement
The phase based algorithm in Section 3 only measures the path

length change, which is not sufficient for 2-D tracking for two reas-
ons. First, we cannot determine the movement direction only using
the path length change due to the lack of the initial position. The
path length change is determined by both the movement distance
and the movement direction with respect to the speaker and mi-
crophone. Movements that are perpendicular to the line connect-
ing the speaker and the microphone incur different changes in path
length than movements that are parallel to the line, even if the ob-
ject moves the same distance. Second, the measurement errors in
the path length change accumulate over time. Thus, even if we have
the initial hand position, the path length estimation will drift away
after tracking for a long time.

In this paper, we propose a delay profile based method to obtain
a coarse-grained path length estimation. Our method uses unmod-
ulated CW sound signals to avoid audible noises, such as bursty
pulses, introduced by traditional ranging signals. Although the ac-
curacy of the coarse grained measurement is low, which is around
4 cm as shown by our experiments, it serves well for the purpose of
providing an initial position, as the realtime tracking is carried out
by fine-grained path length change measurements with accuracy at
mm-level once the initial position is given.

To measure the path length, we transmit sound signals at N dif-
ferent frequencies fk = f0 + k∆f , k = 0, . . . , N − 1, which are
separated by a constant frequency interval of ∆f . Thus, the base-
band signal for any path p at frequency fk is:

Bp(k, t) = A′p,ke
−j(2π(f0+k∆f)dp(t)/c+θp,k). (3)

We observe that for a given path length of dp(t), the phases of the
baseband signals at different frequencies decrease as a linear func-
tion of ∆f , i.e., −2πk∆fdp(t)/c. Therefore, Bp(k, t) at a given

time t will have a constant phase change along the frequency axis,
i.e., changing the value of k. If we perform the Inverse Discrete
Fourier Transform (IDFT) on Bp(k, t), we have the IDFT result as
follows:

bp(n, t) =
1

N

N−1∑
k=0

Bp(k, t)e
j2πkn/N , n = 0, . . . , N − 1.

Suppose we ignore the changes in A′p,k and θp,k for this moment,
by setting A′p,k = A′p and θp,k = 0. In the case that dp(t) =
n̂c/(N∆f) for an integer n̂ ∈ [0, N−1], we derive that bp(n, t) =

A′pe
−j2πf0dp(t)/c × δ(n− n̂, t), where δ(n, t) is the unit impulse

function with δ(n, t) = 1, when n = 0. For other cases, we have
δ(n, t) = 0.

The IDFT of Bp(k, t), denoted as bp(n, t), is actually a time-
delay profile for path p. It has a single peak at time n̂ =
Ndp(t)∆f/c. Therefore, the n̂ that maximizes the magnitude of
bp(n, t) indicates the time-delay of path p. Note that both the di-
gital down conversion process and the IDFT operation are linear
operations. Therefore, as the received signal is a linear combina-
tion of sound waves traveling from different paths, the resulting
IDFT is also a linear combination for the delay profile of all paths.
As the static vector has been removed by our LEVD algorithm,
the IDFT of the dynamic vector contains only the time-delay pro-
file of the moving objects. We identify the peaks in bp(n, t) and
each peak corresponds to one path caused by one moving object.
Measuring the delay n̂ of the peak gives the path length of the cor-
responding object. Figure 8 shows the IDFT result bp(n, t) for a
moving hand with N = 16 sound frequencies. The “hot” posi-
tions indicates the delay profile of high energy sound reflections.
There is only one “hot” curve in Figure 8, which corresponds to the
dominating reflection path of the hand. We can also measure how
the path length changes with time in Figure 8. We observe that the
hand starts close to the phone, where the path has a length of about
15 cm. As the hand moves away, the corresponding path length
increases. We observe that the reflection becomes weak when the
hand is about 45 cm away, where the path length increases to 90
cm between 0.7∼1.5 seconds. We also observe that the hand then
moves close to the phone twice at 2.9 and 6 seconds.
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Figure 8: Delay profile bp(n, t) for a moving hand

4.2 Parameter Setting
The time-delay profile measurement has two parameters that

need to be carefully chosen: the frequency interval ∆f and the
number of frequencies N . For ∆f , on one hand, ∆f should be
large enough so that we can separate high speed movements at ad-
jacent carrier frequencies. For example, a movement with a speed
of 1 m/s leads to frequency components around 100 Hz in the base-
band signal. Thus, adjacent frequencies should be separated by at
least 200 Hz. On the other hand, ∆f should be small enough so that
we can avoid time-domain aliasing. Note that ∆f determines the



time domain aliasing range. The estimated peak position n̂ is given
as an integer value modulo N , which is in the range of 0 ∼ N − 1.
Therefore, a reflector with path length of dwill have the same time-
delay profile as those with path length of d + mc/∆f , where m
is an integer. For example, when ∆f is 350 Hz, paths with length
of 0 cm will have the same delay profile as paths with length of
c/∆f = 98 cm. Such time domain aliasing can be observed in Fig-
ure 8, where the high energy curve wraps back to around 0 cm when
the path length is larger than 98 cm between 4.5 ∼ 5.1 seconds. As
we aim at an operational range of less than 50 cm, we let ∆f to
be 350 Hz. For the number of frequencies N , on one hand, a larger
N gives us a better distance resolution because a larger N leads to
a smaller path length difference c/(N∆f) between two adjacent
points n̂ and n̂ + 1. On the other hand, a larger N requires higher
bandwidth and reduces the energy that we can transmit in a single
frequency. As the total bandwidth forN frequencies is (N−1)∆f ,
we can only fit a limited number of frequencies into the available
frequency range, e.g., 17 ∼ 23 kHz. Furthermore, the more fre-
quencies we use, the less energy we can transmit in each frequency
because the total energy that can be transmitted by the speaker is
limited for mobile devices. When the transmission energy in each
frequency is reduced, the Signal-to-Noise Ratio (SNR) is also re-
duced and the phase measurement becomes less reliable. In this pa-
per, we let N = 16, which implies that the bandwidth is 5.25 kHz
and the path length resolution is 6.16 cm. The actual path length
measurement error is smaller than 4 cm when the target is within
30 cm to the phone, as in our experimental results on Section 6.2.

4.3 System Calibration
The initial phase offset θp,k comes from two sources: one is the

phase inversion caused by reflection, which is the same for all fre-
quencies, and the other is the delay in audio playing and recording
process caused by the hardware limitation of the mobile device,
which is different for different device models. Because of the delay,
the time that we transmit the CW to the speaker is misaligned with
the reference cos(2πft) signal that is used for multiplication in the
coherent detector. Thus, there is a random offset of ∆t between the
emitted and received signal. Consequently, there will be a time off-
set of ∆t in bp(n, t) after the IDFT. This time offset, whose value
depends on the audio initialization process, will remain constant
after the system starts emitting and receiving continuous signals.

We perform the time offset calibration after the system starts
emitting sound signals. As the hardware/operating system intro-
duced time offset ∆t is the same for all paths, we use the LOS
path as the reference path in our calibration process. As we know
the exact distance between the speaker and microphone for a given
mobile device model, we can calculate the expected n̂LOS for the
LOS path. As the static vector is dominated by the LOS path when
there are no large reflectors around, if we perform IDFT on the
static vector of different frequencies, we expect the highest peak
will appear at n̂LOS if ∆t = 0. If we observe that the peak is not
at n̂LOS , we apply a delay ∆t′ on the reference cos(2πft) signal
and iteratively adjust the value of ∆t′ until the peak appears at the
expected position. In our implementation, the average time used for
the calibration process is 0.82 seconds with a standard deviation of
0.16 seconds.

4.4 Combining Fine-grained Phase and
Coarse-grained Delay Measurements

Our 2-D tracking requires both the fine-grained phase measure-
ment and the coarse-grained delay profile measurement. The phase
measurement provides accurate and realtime distance changes so
that the system can respond to user actions with high accuracy

and low latency. The delay profile measurement gives the estim-
ation of path length so that the error in phase measurements would
not accumulate over time. We combine the fine-grained and coarse-
grained measurements to achieve both low latency and stableness
in measurements. From Figure 8, we observe that the delay pro-
file gives consistent estimations when the energy of the reflected
sound is high, e.g., between 2.1∼2.5 seconds. Therefore, we use
the delay profile based path length estimation only when there is a
dominating peak in bp(n, t) that has normalized energy higher than
a given threshold. In such cases, we augment the path length estim-
ation obtained through the delay profile with the path length traced
through the phase measurements using an Exponential Moving Av-
erage (EMA) algorithm. If the hand reflection is weak and there is
no dominating peak in bp(n, t), we only use the phase change to
update the path length as the delay profile is unreliable.

4.5 2-D Gesture Tracking
The position of the hand is determined through multiple path

length measurements obtained from different speaker/microphone
pairs on the mobile device. Figure 9(a) shows the positions of
the speakers and microphones on a typical mobile phone, Sam-
sung Galaxy S5. To measure the path length for multiple speak-
ers/microphones, we use stereo playback and recording capability
that is available on many mobile devices. For example, we can
record the sound at two microphones that are located at different
positions to get two path measurements at the same time. When
there are multiple speakers, we can separate the signal from differ-
ent speakers by assigning different frequencies to each speaker.
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Figure 9: Two dimensional tracking

To simplify our discussion, let us consider a mobile phone with
one speaker and two microphones, as shown in Figure 9(b). Con-
sider the case where the speaker is placed at the origin, while the
two microphones have coordinates of (0, L1) and (0,−L2), re-
spectively. Suppose that the path length from the speaker through
the hand to two microphones are d1 and d2, respectively. The co-
ordinates (x, y) of the hand should be on the ellipses defined by:

4x2

d2
1 − L2

1

+
4(y − L1/2)2

d2
1

= 1 (4)

4x2

d2
2 − L2

2

+
4(y + L2/2)2

d2
2

= 1 (5)

Solving this we have:



x =

√
(d2

1 − L2
1)(d

2
2 − L2

2) ((L1 + L2)2 − (d1 − d2)2)

2(d1L2 + d2L1)

y =
d2L2

1 − d1L2
2 − d2

1d2 + d2
2d1

2(d1L2 + d2L1)
(6)

As the distance L1 and L2 between the speaker to the microphones
are fixed for a given device, we can directly calculate the position
of the hand using the path length d1 and d2.

The pseudocode of our 2-D tracking algorithm is in Algorithm 2.
This algorithm uses the path length estimation on two microphones
to track the hand. Note that it is possible to use sophisticated track-
ing algorithms, such as Kalman filters, to further improve the track-
ing performance. We choose not to use them in our implementation
because they incur high computational cost. However, for mobile
devices with enough computational power, we recommend using
them.

Algorithm 2: Two Dimensional Tracking Algorithm
Input: Data segment of baseband signal for two microphones on N

frequencies
Output: Updated hand position

1 foreach microphone do
2 foreach frequency do
3 Estimate the static vector using LEVD;
4 Obtain the dynamic vector by subtracting the static vector

from the baseband signal;
5 Calculate the path length change based on the phase change

of the dynamic vector;
6 end
7 Use linear regression to combine the path length change

estimation in different frequencies;
8 Update the path length using the path length change estimation;
9 Take IDFT of the dynamic vector of different frequencies to get

bp(n, t);
10 if Peak value in bp(n, t) is larger than threshold then
11 Estimate the coarse-grained path length using n̂;
12 Use EMA to augment the coarse-grained estimation;
13 end
14 end
15 Use the path length of two microphones to update the hand position;

5. IMPLEMENTATION
We implemented LLAP on both the Android and iOS platforms.

On the Android platform, we implement most signal processing
algorithms as C functions using Android NDK to achieve better ef-
ficiency. Our implementation works as an APP that can draw the
2D hand traces in realtime on recent Android phones, e.g., Sam-
sung Galaxy S5 with Android 5.0 OS. On the iOS platform, we use
the vDSP accelerate framework which achieves much better com-
putational efficiency than the Android platform. However, the iOS
platform only supports single channel recording. So, we only im-
plement 1-D hand tracking on the iOS system. Note that we need to
reconfigure the system for certain mobile phones, so that the hard-
ware echo cancellation can be bypassed.

There are some limitations in the hardware and operating sys-
tem of existing mobile phones. First, the placement of the micro-
phones and speakers are not optimized for gesture tracking. For
example, the microphones for Samsung S5 are pointing towards
opposite directions as shown in Figure 9(a). When the hand is in
Region A shown in Figure 9(a), the reflected signal obtained by
microphone 1 is very good while microphone 2 only gets weak sig-
nals. Therefore, to achieve strong signals for both microphones, our

2-D tracking experiments are performed in front of or behind the
phone when using the front or rear speaker, rather than in region
A or B. Second, the latency of our system is constrained by the
operating system. Although LLAP can operate on short data seg-
ments, the Android system only returns sound data in 10∼20 ms
intervals, depending on the phone models. Therefore, we choose
data segment size of 512 samples in our implementation, which
has time duration of 10.7 ms when the sampling rate is 48 kHz. The
iOS system provides better sound APIs which can operate at data
segment sizes as small as 32 samples. However, the iOS system
only supports recording from a single microphone so that we did
not implement 2-D tracking on the iOS platform. Even with these
hardware and software limitations, LLAP achieves good accuracy
and latency on existing mobile phones. We believe that if the mo-
bile phones were designed with hardware/software optimizations
for sound based gesture tracking, such as placing the speaker and
microphones on one side of the phone, the performance of LLAP
could be even better.

6. EVALUATION

6.1 Evaluation Setup
We conducted experiments on Samsung Galaxy S5 using its rear

speaker, top microphone, and bottom microphones in normal of-
fice and home environments with the phone on a table as shown
in Figure 10. Experiments were conducted with five human users.
The users interacted with the phone using their bare hands without
wearing any accessory.

Figure 10: Experimental setup

For 1-D tracking, we evaluated LLAP using three metrics: (1)
Movement distance error: the difference between the LLAP repor-
ted movement distance and the ground truth movement distance
measured by a ruler placed along the movement path. (2) Abso-
lute path length error: the difference between the LLAP repor-
ted path length and the ground truth measured by a ruler. (3) Mi-
cro movement detection accuracy: the probability that LLAP cor-
rectly detects a small single-finger movement and reports the cor-
rect movement direction of either moving towards or away from the
phone. For 2-D tracking, we evaluated LLAP using two metrics: (4)
Tracking error: the distance between the LLAP reported trace and
the standard drawing template. Because the 2-D tracking error is
defined in a different way to 1-D tracking, the results for these two
metrics are not directly comparable. (5) Character recognition ac-
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curacy: the probability that the tracking trace reported by LLAP,
based on the character drawn by a user, can be correctly recognized
by MyScript, a handwriting recognition tool [40]. For efficiency,
we evaluated LLAP using two metrics: (6) Response latency: the
time used by LLAP to accumulate and process the sound data be-
fore it responses to the hand movement. (7) Power consumption:
the energy consumption of LLAP on mobile phones.

6.2 Experimental Results
LLAP achieves an average movement distance error of 3.5 mm

when the hand moves for 10 cm at a distance of 20 cm. We moved
the hand in “Region A” in Figure 9(a) and measured the movement
distance using the top microphone and the rear speaker. The initial
hand position was 20 cm away from the microphone and the hand
moved away from the microphone for a distance of 10 cm. Figure
11(a) show the Cumulative Distribution Function (CDF) of the dis-
tance measurement error for 200 movements. The 90th percentile
measurement error is 7.3 mm and the average error is 3.5 mm as
shown in Figure 11(a).

LLAP achieves an average movement distance error of less than
8.7 mm when the hand moves for 10 cm at a distance of less than
35 cm. Figure 11(b) shows the average movement distance error
when the hand is at different distances from the microphone in side-
by-side comparison with DDBR, the movement distance measure-
ment algorithm proposed in [2]. Results show that our LEVD al-
gorithm outperforms the DDBR algorithm as DDBR is susceptible
to noises. Results also show that LEVD with signals of multiple
frequencies outperforms LEVD with signals of a single frequency
in terms of distance measurement accuracy by 21% on average.
We observe that for LEVD, the movement distance error increases
when the hand is too close or too far from the microphone. When
the hand is too close to the microphone, the impact of the hand
size increases, which leads to larger movement distance errors. To
verify the impact of hand sizes, we conducted the same set of ex-
periments with different types of moving objects, including a hand,
two fingers, and a plastic flat reflector with an area of 12×4 cm.

As shown in Figure 11(c), smaller objects, such as two-fingers and
the small reflector, result in a better accuracy of 3.76 mm and 2.68
mm, respectively, when the object is very close to the microphone
(within a distance of 5 cm). Due to the better reflection ability of
the reflector, the measurement accuracy for the reflector at a dis-
tance of 40 cm is 5.32 mm, which is much smaller than that of
the hand and two-fingers. This is because when the hand is too far
from the microphone, the sound signal reflected from the hand is
too weak and the SNR is too low, which leads to larger movement
distance errors. When the hand is more than 40 cm way from the
microphone, the error increases to more than 14 mm. Other small
variations in accuracy in Figure 11(c) are mostly caused by the dif-
ferent multi-path conditions at different distances. LLAP can also
operate while the device is inside the pocket. Figure 11(c) shows
that the measurement error of LLAP only slightly increases by 1.4
mm on average when the device is inside a bag made of cloth.

LLAP is robust to background noises and achieves an average
movement distance error of 5.81 mm under noise interferences.
Figure 11(d) shows the measurement error under four different en-
vironments: the “normal” environment is a typical silent indoor
one, the “music” environment is an indoor environment with pop
music being played with normal volume, the “speech” environment
is a room with people talking at the same time, and the “speaker”
environment is playing music from the speaker on the same device.
The sound pressure levels measured at these four environments are
45 dB, 70 dB, 65 dB, and 65 dB, respectively. We observe that
LLAP has slightly larger movement distance errors under noise in-
terferences. Compared to the “normal” environment, the movement
distance errors are increased by 2.45 mm and 1.66 mm (averaged
over different distances) for the “music” and “speech” environ-
ments, respectively. Because LLAP only uses the narrow baseband
signal around each transmitted frequency, the robustness of LLAP
under audible sound noises is sufficient for practical usage. For the
challenging scenario where the smart phone plays music from the
same speaker that is used for sending the CW signal, LLAP still
achieves distance accuracy of 7.5 mm when the hand is within 25



cm to the speaker. Due to the strong self-interference in this scen-
ario, the measurement error at a distance larger than 30 cm is more
than 20 mm. Note that we can still use the microphone for normal
recording when LLAP is running. Thus, LLAP do not block the
normal operation of the speakers and microphones on the device.

LLAP can reliably measure the movement distance with speeds
from 4 cm/s to 25 cm/s. In our experiments, a user moves his hand at
different speeds for a distance of 10 cm. Figure 12(a) shows the dis-
tribution of the movement distance errors with respect to the move-
ment speed. We observe that for slow movement speeds from 4
cm/s to 15 cm/s, the error distribution is consistent with an average
error of 3.64 mm. The error increases when the movement speed is
higher than 15 cm/s. The movement distance error of faster move-
ments are higher because the changes in static vector introduced by
the arm when the hand moves faster are larger. However, the max-
imum error is still less than 25 mm. Thus, LLAP can handle both
slow and fast hand movements.

LLAP achieves an average absolute path length error of less than
40 mm when the hand is within 25 cm from the phone as shown in
Figure 12(b). We placed the hand at different distances to the phone
and measure the absolute length of the path reflected by the hand.
Within 25 cm to the microphone, the average absolute path length
error is 3.57 cm. Note that the absolute path length is the length that
the sound signals travels, which is twice of the distance between the
phone and the hand.

LLAP achieves a micro movement detection accuracy of higher
than 94% within a distance of 30 cm. In our experiments, a user
moves only the index finger for a distance of 5 mm at different dis-
tances from the microphone. We consider the detection to be suc-
cessful only when LLAP correctly detects the movement and gives
the correct movement direction for the micro movement. Figure
12(c) shows the micro movement detection accuracy of LLAP. We
observe that the detection accuracy is above 94% when the finger is
within 30 cm and quickly reduces when the distance is larger than
35 cm due to the weaker signals reflection of the finger and the
resulting lower SNR. Results also show that LLAP has low false
positive ratios. When placed in a silent environment, LLAP makes
only one false detection of movement (with a distance larger than 5
mm) among 35,015 detection decisions. This gives a false positive
rate of only 0.003%.

For 2-D tracking, LLAP achieves a tracking error of 4.57 mm.
Figure 13 shows samples of square and word drawn by LLAP.
These drawings have dimensions around 10×10 cm, which is in the
comfortable range for gesture inputs. To evaluate the performance
of tracking errors, we request 5 users to draw according to a square
template of 10×10 cm using LLAP. The average time for users to
finish one drawing is 5.4 seconds. Figure 14(a) shows the average
error of the estimated trace to the template, which is defined as the
distance of points on the trace to the nearest point on the template.
The error is the average result of 50 drawings for each user. The av-
erage error of the drawing is 3.34 ∼ 5.54 mm (with a mean of 4.57
mm). The maximum deviation from the template is 13.1 ∼ 20.7
mm (with mean of 16.41 mm) for different users. Note that we ad-
opt a relative distance error measurement and the actual trace of the
hand may have an offset to the estimated trace. Since we provide
realtime feedback to the user, users can control the drawing trace
to follow the template and compensate for small offsets. The track-
ing performance of LLAP is robust to noises. In the “music” and
“speech” environments, the average tracking error is 4.89 and 4.81
mm, respectively.

For 2-D tracking, the characters and words drawn by LLAP can
be recognized by MyScript with accuracies of 92.3% and 91.2%, re-
spectively. Figure 14(b) shows the average recognition accuracies

for each user. For characters, each user drew at least 5 times for
each of the 26 Latin alphabets. For words, each user drew at least
5 times for each word in a list of 11 words, such as “yes”, “can” or
“bye”. For the lower case letters that cannot be drawn with a single
stroke, such as “i”, we used the upper case letter for these char-
acters. The average character recognition accuracies for different
users are in the range of 87.6%∼ 95.3%, with an average accuracy
of 92.3% over all users. The average word recognition accuracies
for different users are in the range of 88.4% ∼ 94.5%, with an av-
erage accuracy of 91.2%.
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Figure 13: Sample results of drawing in the air
For responsiveness, LLAP achieves a latency of less than 15 ms

on mobile phones. We measured the running time for a Samsung
S5 with Qualcomm Snapdragon 2.5GHz quad-core CPU to pro-
cess data segments of 512 samples (time duration of 10.7 ms at 48
kHz sampling rate). The average time used for our algorithms of
baseband down conversion, LEVD, phase based path length change
measurement, and delay profile based absolute path length meas-
urement are 3.55, 0.17, 0.36, and 0.08 ms, respectively. With pro-
cessing time for other operations, the total running time for LLAP
to process 10.7 ms of data is 4.32 ms, which meets the real time
processing requirement. Although we have simplified the down
conversion process using CIC filters, most of the processing time
(about 82%) is still used by baseband down conversion because we
need to process the 48 kHz samples at 16 frequencies for each of
the two microphones, which incurs considerable operations. After
baseband down conversion, the sampling rate is reduced by 16
times. Therefore, the processing time for rest of the operations be-
comes significantly smaller. Our implementation on iOS platform
has better performance as we use the vDSP accelerate framework
for audio processing. The average time for a iPhone 6s with A9 pro-
cessor to process 512 samples is only 0.30 ms, as shown in Table
1. Although our implementation on iOS is simpler, e.g., only pro-
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Figure 14: Performance of 2-D tracking

cessing 16 frequencies on a single microphone with 1-D tracking,
the processing speed for down conversion is still much faster than
using Android NDK. This shows that the DSP acceleration frame-
work on mobile devices can efficiently fulfill the computational re-
quirements of LLAP. The overall latency of our system is smaller
than 15 ms. Therefore, there is no human perceivable delay in the
response during our experiments.

Phone Down Con-
version LEVD Phase

measure
Delay
profile Total

Samsung S5 3.55ms 0.17ms 0.36ms 0.08ms 4.32ms
iPhone 6s 0.19ms 0.03ms 0.08ms – 0.30ms

Table 1: Time to process audio segment with 10.7 ms duration

LLAP runs for more than 10.5 hours on COTS mobile devices.
To measure the energy consumption of LLAP, we run the LLAP
application with maximum audio volume and realtime 1-D track-
ing on an iPhone 6s. A fully charged iPhone 6s can continuously
run LLAP for 10.57 hours. The instrument tools provided by Xcode
rate the energy usage level of LLAP as 0 (lowest) in the scale of 0∼
20. The reason of good power efficiency is that playing/recording
the sound incurs low energy cost and our implementation only con-
sumes less than 3% CPU time on the iOS platform.

7. LIMITATIONS
LLAP demonstrates that commercial mobile devices can use

acoustic phase information to track hands/fingers with millimeter-
level accuracy. However, our current implementation of LLAP has
the following three limitations. First, LLAP can only track a single
moving object. Therefore, it treats the finger and the hand as one

integrated object. LLAP cannot recognize complex gestures that
involves multiple moving fingers, such as “pinch”. Furthermore,
LLAP cannot detect events such as “touch” as in mTrack [2].
Therefore, the users must finish the drawing in a single stroke.
An interesting future research topic would be separating multiple
fingers using sound signals recorded by multiple microphones at
multiple frequencies. Second, LLAP can be interfered by nearby
moving objects, e.g., a person walking within 2 meters or the mov-
ing body of the user himself. Therefore, our current implementation
works only when the surrounding is relatively static. We consider to
remove the background movements using the fact that these move-
ments occur at a longer distance than the gesture so that they ap-
pear at a different location in the delay profile. Third, LLAP can be
interfered by high frequency noises, especially sounds emitted by
other LLAP devices. Such interference can be mitigated by using
better speakers and microphones which supports up to 80 kHz fre-
quency [41]. This is because there are less interferences in higher
frequencies (e.g., higher than 40 kHz) and different LLAP devices
can use different frequency bands as there are more spectrum re-
sources in higher frequency bands.

8. CONCLUSION
We make following key contributions. First, we propose an

acoustic phase based gesture tracking algorithm, which achieves
millimeter-level accuracy, less than 15 ms latency, and lower than
3% CPU usage on commercial mobile phones. Second, we propose
a suite of novel signal processing algorithms, such as the LEVD,
the phase based path length change measurement, and the delay
profile based path length change measurement algorithms, to en-
able our device-free approach to gesture tracking using acoustic
signals. We implemented our prototype system LLAP on commer-
cial mobile phones and evaluated its performance in various set-
tings for seven metrics. We envision that LLAP will enable a pleth-
ora of novel device-free gesture based mobile applications.
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