
VSkin: Sensing Touch Gestures on Surfaces of
Mobile Devices Using Acoustic Signals

Ke Sun
State Key Laboratory for Novel Software Technology
Nanjing University, China, kesun@smail.nju.edu.cn

Ting Zhao
State Key Laboratory for Novel Software Technology

Nanjing University, zhaoting@smail.nju.edu.cn

Wei Wang
State Key Laboratory for Novel Software Technology

Nanjing University, China, ww@nju.edu.cn

Lei Xie
State Key Laboratory for Novel Software Technology

Nanjing University, China, lxie@nju.edu.cn

ABSTRACT
Enabling touch gesture sensing on all surfaces of the mo-

bile device, not limited to the touchscreen area, leads to
new user interaction experiences. In this paper, we propose
VSkin, a system that supports fine-grained gesture-sensing
on the back of mobile devices based on acoustic signals.
VSkin utilizes both the structure-borne sounds, i.e., sounds
propagating through the structure of the device, and the
air-borne sounds, i.e., sounds propagating through the air,
to sense finger tapping and movements. By measuring both
the amplitude and the phase of each path of sound signals,
VSkin detects tapping events with an accuracy of 99.65% and
captures finger movements with an accuracy of 3.59mm.

CCS CONCEPTS
• Human-centered computing → Interface design

prototyping; Gestural input;

KEYWORDS
Touch gestures; Ultrasound

ACM Reference Format:
Ke Sun, Ting Zhao, Wei Wang, and Lei Xie. 2018. VSkin: Sens-
ing Touch Gestures on Surfaces of Mobile Devices Using Acoustic
Signals. In MobiCom ’18: 24th Annual International Conference on
Mobile Computing and Networking, October 29–November 2, 2018,
New Delhi, India. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3241539.3241568

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom’18, October 29–November 2, 2018, New Delhi, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00
https://doi.org/10.1145/3241539.3241568

(a) Back-Swiping (b) Back-Tapping (c) Back-Scrolling

Figure 1: Back-of-Device interactions

1 INTRODUCTION
Touch gesture is one of the most important ways for users

to interact with mobile devices. With the wide-deployment
of touchscreens, a set of user-friendly touch gestures, such
as swiping, tapping, and scrolling, have become the de facto
standard user interface for mobile devices. However, due to
the high-cost of the touchscreen hardware, gesture-sensing
is usually limited to the front surface of the device. Further-
more, touchscreens combine the function of gesture-sensing
with the function of displaying. This leads to the occlusion
problem [30], i.e., user fingers often block the content dis-
played on the screen during the interaction process.

Enabling gesture-sensing on all surfaces of the mobile de-
vice, not limited to the touchscreen area, leads to new user
interaction experiences. First, new touch gestures solve the
occlusion problem of the touchscreen. For example, Back-of-
Device (BoD) gestures use tapping or swiping on the back of
a smartphone as a supplementary input interface [22, 35]. As
shown in Figure 1, the screen is no longer blocked when the
back-scrolling gesture is used for scrolling the content. BoD
gestures also enrich the user experience of mobile games by
allowing players to use the back surface as a touchpad. Sec-
ond, defining new touch gestures on different surfaces helps
the system better understand user intentions. On traditional
touchscreens, touching a webpage on the screen could mean
that the user wishes to click a hyperlink or the user just
wants to scroll down the page. Existing touchscreen schemes

https://doi.org/10.1145/3241539.3241568
https://doi.org/10.1145/3241539.3241568
https://doi.org/10.1145/3241539.3241568

often confuse these two intentions, due to the overloaded ac-
tions on gestures that are similar to each other. With the new
types of touch gestures performed on different surfaces of
the device, these actions can be assigned to distinct gestures,
e.g., selecting an item should be performed on the screen
while scrolling or switching should be performed on the back
or the side of the device. Third, touch sensing on the side
of the phone enables virtual side-buttons that could replace
physical buttons and improve the waterproof performance of
the device. Compared to in-air gestures that also enrich the
gesture semantics, touch gestures have a better user experi-
ence, due to their accurate touch detection (for confirmation)
connected to the useful haptic feedbacks.
Fine-grained gesture movement distance/speed measure-

ments are vital for enabling touch gestures that users are
already familiar with, including scrolling and swiping. How-
ever, existing accelerometer or structural vibration based
touch sensing schemes only recognize coarse-grained ac-
tivities, such as the tapping events [5, 35]. Extra informa-
tion on the tapping position or the tapping force levels usu-
ally requires intensive training and calibration processes
[12, 13, 25] or additional hardware, such as a mirror on the
back of the smartphone [31].
In this paper, we propose VSkin, a system that supports

fine-grained gesture-sensing on the surfaces of mobile de-
vices based on acoustic signals. Similar to a layer of skin
on the surfaces of the mobile device, VSkin can sense both
the finger tapping and finger movement distance/direction
on the surface of the device. Without modifying the hard-
ware, VSkin utilizes the built-in speakers and microphones
to send and receive sound signals for touch-sensing. More
specifically, VSkin captures both the structure-borne sounds,
i.e., sounds propagating through the structure of the device,
and the air-borne sounds, i.e., sounds propagating through
the air. As touching the surface can significantly change the
structural vibration pattern of the device, the characteristics
of structure-borne sounds are reliable features for touch de-
tection, i.e., whether the finger contacts the surface or not
[12, 13, 25]. While it is difficult to use the structure-borne
sounds to sense finger movements, air-borne sounds can
measure the movement with mm-level accuracy [14, 28, 34].
Therefore, by analyzing both the structure-borne and the
air-borne sounds, it is possible to reliably recognize a rich set
of touch gestures as if there is another touchscreen on the
back of the phone. Moreover, VSkin does not require inten-
sive training, as it uses the physical properties of the sound
propagation to detect touch and measure finger movements.

The key challenge faced by VSkin is to measure both the
structure-borne and the air-borne signals with high fidelity
while the hand is very close to the mobile device. Given the
small form factor of mobile devices, sounds traveling through
different mediums and paths arrive at the microphone within

a short time interval of 0.13∼0.34ms , which is just 6∼16 sam-
ple points at a sampling rate of 48 kHz. With the limited
inaudible sound bandwidth (around 6 kHz) available on com-
mercial mobile devices, it is challenging to separate these
paths. Moreover, to achieve accurate movement measure-
ment and location independent touch detection, we need
to measure both the phase and the magnitude of each path.
To address this challenge, we design a system that uses the
Zadoff-Chu (ZC) sequence to measure different sound paths.
With the near-optimal auto-correlation function of the ZC
sequence, which has a peak width of 6 samples, we can sepa-
rate the structure-borne and the air-borne signals when the
distance between the speaker and microphone is just 12 cm.
Furthermore, we develop a new algorithm that measures
the phase of each sound path at a rate of 3,000 samples per
second. Compared to traditional impulsive signal systems
that measure sound paths in a frame by frame manner (with
frame rate <170 Hz [14, 34]), the higher sampling rate helps
VSkin capture fast swiping and tapping events.

We implement VSkin on commercial smartphones as real-
time Android applications. Experimental results show that
VSkin achieves a touch detection accuracy of 99.65% and an
accuracy of 3.59mm for finger movement distances. Our user
study shows that VSkin only slightly increases themovement
time used for interaction tasks, e.g., scrolling and swiping,
by 34% and 10% when compared to touchscreens.

We made the following contributions in this work:
•We introduce a new approach for touch-sensing on mo-

bile devices by separating the structure-borne and the air-
borne sound signals.
• We design an algorithm that performs the phase and

magnitude measurement of multiple sound paths at a high
sampling rate of 3 kHz.
•We implement our system on the Android platform and

perform real-world user studies to verify our design.

2 RELATEDWORK
We categorize researches related to VSkin into three

classes: Back-of-Device interactions, tapping and force sens-
ing, and sound-based gesture sensing.

Back-of-Device Interactions: Back-of-Device interac-
tion is a popular way to extend the user interface of mobile
devices [5, 11, 31, 32, 35]. Gestures performed on the back
of the device can be detected by the built-in camera [31, 32]
or sensors [5, 35] on the mobile device. LensGesture [32]
uses the rear camera to detect finger movements that are
performed just above the camera. Back-Mirror [31] uses an
additional mirror attached to the rear camera to capture BoD
gestures in a larger region. However, due to the limited view-
ing angle of cameras, these approaches either have limited
sensing area or need extra hardware for extending sensing

range. BackTap [35] and βTap[5] use built-in sensors, such
as the accelerometer, to sense coarse-grained gestures. How-
ever, sensor readings only provide limited information about
the gesture, and they cannot quantify the movement speed
and distance. Furthermore, accelerometers are sensitive to
vibrations caused by hand movements while the user is hold-
ing the device. Compared to camera-based and sensor-based
schemes, VSkin incurs no additional hardware costs and can
perform fine-grained gesture measurements.

Tapping and Force Sensing: Tapping and force applied
to the surface can be sensed by different types of sensors
[4, 7, 9, 10, 12, 13, 15, 19, 25]. TapSense [7] leverages the
tapping sound to recognize whether the user touches the
screen with a fingertip or a fist. ForceTap [9] measures the
tapping force using the built-in accelerometer. VibWrite [13]
and VibSense [12] use the vibration signal instead of the
sound signal to sense the tapping position so that the inter-
ference in air-borne propagation can be avoided. However,
they require pre-trained vibration profiles for tapping local-
ization. ForcePhone [25] uses linear chirp sounds to sense
force and touch based on changes in the magnitude of the
structure-borne signal. However, fine-grained phase infor-
mation cannot be measured through chirps and chirps only
capture the magnitude of the structure-borne signal at a low
sampling rate. In comparison, our system measures both the
phase and the magnitude of multiple sound paths with a
high sampling rate of 3 kHz so that we can perform robust
tap sensing without intensive training.

Sound-based Gesture Sensing: Several sound-based
gesture recognition systems have been proposed to recog-
nize in-air gestures [1, 3, 6, 16, 17, 21, 23, 33, 37]. Soundwave
[6], Multiwave [17], and AudioGest [21] use Doppler effect
to recognize predefined gestures. However, Doppler effect
only gives coarse-grained movement speeds. Thus, these
schemes only recognize a small set of gestures that have
distinctive speed characters. Recently, three state-of-the-art
schemes (i.e., FingerIO [14], LLAP [28], and Strata [34]) use
ultrasound to track fine-grained finger gestures. FingerIO
[14] transmits OFDM modulated sound frames and locates
the moving finger based on the change of the echo profiles of
two consecutive frames. LLAP [28] uses Continuous Wave
(CW) signal to track the moving target based on the phase
information, which is susceptible to the dynamic multipath
caused by other moving objects. Strata [34] combines the
frame-based approach and the phase-based approach. Using
the 26-bit GSM training sequence that has nice autocorrela-
tion properties, Strata can track phase changes at different
time delays so that objects that are more than 8.5 cm apart
can be resolved. However, these schemes mainly focus on
tracking in-air gestures that are performed at more than
20 cm away from the mobile device [14, 23, 28, 34]. In com-
parison, our system uses both the structure-borne and the

Top Mic (Mic 2)

Bottom Mic (Mic 1)

Path 2

Path 1

Path 3

Path 4
Path 6

Path 5

Rear Speaker
Structure path

LOS air path

Reflection air path

Back Surface

of the Phone

Figure 2: Sound propagation paths on a smartphone

air-borne sound signals to sense gestures performed on the
surface of the mobile devices, which are very close (e.g., less
than 12 cm) to both the speakers and the microphones. As the
sound reflections at a short distance are often submerged by
the Line-of-Sight (LOS) signals, sensing gestures with SNR
≈ 2 dB at 5 cm is considerably harder than sensing in-air
gestures with SNR ≈ 12 dB at 30 cm.

3 SYSTEM OVERVIEW
VSkin uses both the structure-borne and the air-borne

sound signals to capture gestures performed on the surface of
the mobile device. We transmit and record inaudible sounds
using the built-in speakers and microphones on commodity
mobile devices. As an example illustrated in Figure 2, sound
signals transmitted by the rear speaker travel through multi-
ple paths on the back of the phone to the top and bottom mi-
crophones. On both microphones, the structure-borne sound
that travels through the body structure of the smartphone
arrives first. This is because sound wave propagates much
faster in the solid (>2,000m/s) than in the air (around 343m/s)
[24]. There might be multiple copies of air-borne sounds ar-
riving within a short interval following the structure-borne
sound. The air-borne sounds include the LOS sound and the
reflection sounds of surrounding objects, e.g., the finger or
the table. All these sound signals are mixed at the recording
microphones.
VSkin performs gesture-sensing based on the mixture of

sound signals recorded by the microphones. The design of
VSkin consists of the following four components:

Transmission signal design: We choose to use the
Zadoff-Chu (ZC) sequence modulated by a sinusoid carrier as
our transmitted sound signal. This transmission signal design
meets three key design goals. First, the auto-correlation of
ZC sequence has a narrow peakwidth of 6 samples so that we
can separate sound paths arrive with a small time-difference
by locating the peaks corresponding to their different delays,
see Figure 3. Second, we use interpolation schemes to reduce
the bandwidth of the ZC sequence to less than 6 kHz so that
it can be fit into the narrow inaudible range of 17 ∼ 23 kHz

1 257 513 769
 Samples

0

1

2

3
 A

bs
ol

ut
e

va
lu

e 106

 (301, 2.25 106)
 Path 1 and Path 3

 Path 5

(a) Bottom microphone (Mic 1)

0 256 512 768 1024
 Samples

0

5

10

15

 A
bs

ol
ut

e
va

lu
e 104

 Path 2
 (301, 1.19 105)

 Path 4
 (313, 1.17 105)

 Path 6

(b) Top microphone (Mic 2)
Figure 3: IR estimation of dual microphones

provided by commodity speakers and microphones. Third,
we choose to modulate the ZC sequence so that we can ex-
tract the phase information, which cannot be measured by
traditional chirp-like sequences such as FMCW sequences.

Sound path separation and measurement: To sepa-
rate different sound paths at the receiving end, we first use
cross-correlation to estimate the Impulse Response (IR) of the
mixed sound. Second, we locate the candidate sound paths
using the amplitude of the IR estimation. Third, we identify
the structure-borne path, the LOS path, and the reflection
path by aligning candidate paths on different microphones
based on the known microphone positions. Finally, we use
an efficient algorithm to calculate the phase and amplitude
of each sound path at a high sampling rate of 48 kHz.

Finger movement measurement: The finger move-
ment measurement is based on the phase of the air-borne
path reflected by the finger. To detect the weak reflections of
the finger, we first calculate the differential IR estimations
so that changes caused by finger movements are amplified.
Second, we use an adaptive algorithm to determine the de-
lay of the reflection path so that the phase and amplitude
can be measured with high SNR. Third, we use an Extend
Kalman Filter to further amplify the sound signal based on
the finger movement model. Finally, the finger movement
distance is calculated by measuring the phase change of the
corresponding reflection path.

Touch measurement:We use the structure-borne path
to detect touch events, since the structure-borne path is
mainly determined by whether the user’s finger is pressing
on the surface or not. To detect touch events, we first cal-
culate the differential IR estimations of the structure-borne
path. We then use a threshold-based scheme to detect the
touch and release events. To locate the touch position, we
found that the delay of the changes in structure-borne sound
is closely related to the distance from the touch position to
the speaker. Using this observation, we classify the touch
event into three different regions with an accuracy of 87.8%.

Note that finger movement measurement and touch
measurement can use signal captured by the top micro-
phone, the bottom microphone, or both. How these mea-
surements are used in specific gestures, such as scrolling
and swiping, depends on both the type of the gestures
and the placement of microphones of the given device, see
Section 6.5.

4 TRANSMISSION SIGNAL DESIGN
4.1 Baseband Sequence Selection

Sound signals propagating through the structure path, the
LOS path, and the reflection path arrive within a very small
time interval of less than 0.34ms , due to the small size of a
smartphone (< 20cm). One way to separate these paths is
to transmit short impulses of sounds so that the reflected
impulses do not overlap with each other. However, impulses
with short time durations have very low energy so that the
received signals, especially those reflected by the finger, are
too weak to be reliably measured.

In VSkin, we choose to transmit a periodical high-energy
signal and rely on the auto-correlation properties of the
signal to separate the sound paths. A continuous period-
ical signal has higher energy than impulses so that the
weak reflections can be reliably measured. The cyclic auto-
correlation function of the signal s[n] is defined as R (τ) =
1
N
∑N

n=1 s[n]s∗ [(n − τ) mod N], where N is the length of
the signal, τ is the delay, and s∗[n] is the conjugation of the
signal. The cyclic auto-correlation function is maximized
around τ = 0 and we define the peak at τ = 0 as the main
lobe of the auto-correlation function, see Figure 5(b). When
the cyclic auto-correlation function has a single narrow peak,
i.e., R (τ) ≈ 0 for τ , 0, we can separate multiple copies of
s[n] arrived at different arrival delay τ by performing cross-
correlation of the mixed signal with the cyclically shifted
s[n]. For the cross-correlation results as shown in Figure 3,
each delayed copy of s[n] in the mixed signal leads to a peak
at its corresponding delay value of τ .

The transmitted sound signal needs to satisfy the following
extra requirements to ensure both the resolution and signal-
to-noise ratio of the path estimation:
• Narrow autocorrelation main lobe width: The

width of the main lobe is the number of points on each
side of the lobe where the power has fallen to half (−3 dB)
of its maximum value. A narrow main lobe leads to better
time resolution in sound propagation paths.
• Low baseband crest factor: Baseband crest factor is

the ratio of peak values to the effective value of the baseband
signal. A signal with a low crest factor has higher energy
than a high crest factor signal with the same peak power [2].
Therefore, it produces cross-correlation results with higher
signal-to-noise ratio while the peak power is still below the
audible power threshold.

Interpolation
Method

Auto-correlation
main lobe width

Baseband crest
factor

Auto-correlation
gain

Auto-correlation
side lobe level

GSM (26 bits) Time domain 14 samples 8.10 dB 11.80 dB -4.64 dB
Frequency domain 8 samples 6.17 dB 11.43 dB -3.60 dB

Barker (13 bits) Time domain 16 samples 10.50 dB 11.81 dB -9.57 dB
Frequency domain 8 samples 5.12 dB 13.46 dB -6.50 dB

M-sequence (127 bits) Time domain 16 samples 5.04 dB 12.04 dB -11.63 dB
Frequency domain 8 samples 6.68 dB 13.90 dB -6.58 dB

ZC (127 bits) Time domain 16 samples 3.85 dB 12.14 dB -12.45 dB
Frequency domain 6 samples 2.56 dB 13.93 dB -6.82 dB

Table 1: Performance of different types of sequences

• High auto-correlation gain: The auto-correlation
gain is the peak power of the main lobe divided by the
average power of the auto-correlation function. A higher
auto-correlation gain leads to a higher signal-to-noise ratio
in the correlation result. Usually, a longer code sequence has
a higher auto-correlation gain.
• Low auto-correlation side lobe level: Side lobes are

the small peaks (local maxima) other than the main lobe in
the auto-correlation function. A large side lobe level will
cause interference in the impulse response estimation.
We compare the performance of the transmission sig-

nals with different code sequence designs and interpolation
methods. For code sequence design, we compare commonly
used pseudo-noise (PN) sequences (i.e., GSM training se-
quence, Barker sequence, and M-sequence) with a chirp-like
polyphase sequence (ZC sequence [18]) in Table 1. Note that
the longest Barker sequence and GSM training sequence
are 13 bits and 26 bits, respectively. For M-sequence and ZC
sequence, we use a sequence length of 127 bits.
We interpolate the raw code sequences before transmit-

ting them. The purpose of the interpolation is to reduce the
bandwidth of the code sequence so that it can be fit into a
narrow transmission band that is inaudible to humans. There
are two methods to interpolate the sequence, the time do-
main method and the frequency domain method. For the
time domain method [34], we first upsample the sequences
by repeating each sample by k times (usually k = 6 ∼ 8) and
then use a low-pass filter to ensure that the signal occupies
the desired bandwidth. For the frequency domain method,
we first perform Fast Fourier Transform (FFT) of the raw
sequence, perform zero padding in the frequency domain to
increase the length of the signal, and then use Inverse Fast
Fourier Transform (IFFT) to convert the signal back into the
time domain. For both methods, we reduce the bandwidth
of all sequences to 6 kHz with a sampling rate of 48 kHz so
that the modulated signal can be fit into the 17 ∼ 23 kHz
inaudible range supported by commercial devices.

The performance of different sound signals is summarized
in Table 1. The ZC sequence has the best baseband crest factor
and auto-correlation gain. Although the rawM-sequence has
the ideal auto-correlation performance and crest factor, the

IFFTZC Up-
sample

I

Q

	��� �����

��������

 FFT

Figure 4: Sound signal modulation structure

sharp transitions between “0” and “1” in M-sequence make
the interpolated version worse than chirp-like polyphase
sequences [2]. In general, frequency domain interpolation
is better than the time domain interpolation, due to their
narrow main lobe width. While the side lobe level of fre-
quency domain interpolation is higher than the time domain
interpolation, the side lobe level of −6.82 dB provided by the
ZC sequence gives enough attenuation on side lobes for our
system.
Based on above considerations, we choose to use the fre-

quency domain interpolated ZC sequence as our transmitted
signal. The root ZC sequence parametrized by u is given by:

ZC[n] = e
−j πun (n+1+2q)NZC , (1)

where 0 ⩽ n < NZC , q is a constant integer, and NZC is
the length of sequence. The parameter u is an integer with
0 < u < NZC and дcd (NZC ,u) = 1. The ZC sequence has
several nice properties [18] that are useful for sound signal
modulation. For example, the ZC sequences have constant
magnitudes. Therefore, the power of the transmitted sound
is constant so that we can measure its phase at high sam-
pling rates as shown in later sections. Note that compared
to the single frequency scheme [28], the disadvantages of
modulated signals including using ZC sequence are that they
have to occupy the larger bandwidth and therefore require
stable frequency response for the microphone.

4.2 Modulation and Demodulation
We use a two-step modulation scheme to convert the raw

ZC sequence into an inaudible sound signal, as illustrated
in Figure 4. The first step is to use the frequency domain
interpolation to reduce the bandwidth of the sequence. We
first perform NZC -points FFT on the raw complex valued
ZC sequence, where NZC is the length of the sequence. We
then zero-pad the FFT result into N ′ZC = NZC fs/B points by

0 128 256 384 512 640 768 896 1024
 Samples

-0.5

0

0.5
 I

\Q
 (n

or
m

al
iz

ed
)

 I
 Q

(a) Baseband signal in the time domain

-512 -256 0 256 512
 Samples

0

0.5

1

 A
bs

ol
ut

e
va

lu
e (0,1.0)

 (-11,0.211)

(b) Autocorrelation of baseband signal

Figure 5: Baseband signal of the ZC sequence

inserting zeros after the positive frequency components and
before the negative frequency components, where B is tar-
geting signal bandwidth (e.g., 6 kHz) and fs is the sampling
rate of the sound (e.g., 48 kHz). In this way, the interpo-
lated ZC sequence only occupies a small bandwidth of B in
the frequency domain. Finally, we use IFFT to convert the
interpolated signal back into the time domain.
In VSkin, we choose a ZC sequence length of 127 points

with a parameter of u = 63. We pad the 127-point ZC se-
quence into 1024 points. Therefore, we have B = 5.953
kHz at the sampling rate of fs = 48 kHz. The interpo-
lated ZC sequence is a periodical complex valued signal
with a period of 1024 sample points (21.3ms) as shown in
Figure 5(a).

The second step of the modulation process is to up-convert
the signal into the passband. In the up-convert step, the inter-
polated ZC sequence is multiplied with a carrier frequency
of fc as shown in Figure 4. The transmitted passband sig-
nal is T (t) = cos(2π fct)ZC I

T (t) − sin(2π fct)ZC
Q
T (t), where

ZC I
T (t) and ZC

Q
T (t) are the real part and imaginary part of

the time domain ZC sequence, respectively.We set fc as 20.25
kHz so that the transmitted signal occupies the bandwidth
from 17.297 kHz to 23.25 kHz. This is because of frequencies
higher than 17 kHz are inaudible to most people [20].

The signal is transmitted through the speaker on the mo-
bile device and recorded by the microphones using the same
sampling frequency of 48 kHz. After receiving the sound sig-
nal, VSkin first demodulates the signal by down-converting
the passband signal back into the complex valued baseband
signal.

5 SOUND PATH SEPARATION AND
MEASUREMENT

5.1 Multipath Propagation Model
The received baseband signal is a superposition of mul-

tiple copies of the transmitted signals with different delays

Path Speed Distance Delay Amplitude
1 Structure (Mic 1) >2,000 m/s 4.5 cm ≪0.13 ms Large
2 Structure (Mic 2) >2,000 m/s 12 cm ≪0.13 ms Medium
3 LOS (Mic 1) 343 m/s 4.5 cm 0.13 ms Large
4 LOS (Mic 2) 343 m/s 12 cm 0.34 ms Medium
5 Reflection (Mic 1) 343 m/s >4.5 cm >0.13 ms Small
6 Reflection (Mic 2) 343 m/s >12 cm >0.34 ms Small

Table 2: Different propagation paths
due to multipath propagation. Suppose that the transmitted
baseband signal is ZCT (t) and the system is a Linear Time-
Invariant (LTI) system, then the received baseband signal
can be represented as:

ZCR (t) =
L∑
i=1

Aie
−jϕiZCT (t − τi) = h(t) ∗ ZCT (t), (2)

where L is the number of propagation paths, τi is the de-
lay of the ith propagation path and Aie

−jϕi represents the
complex path coefficient (i.e., amplitude and phase) of the
ith propagation path, respectively. The received signal can
be viewed as a circular convolution, h(t) ∗ ZCT (t), of the
Impulse Response h(t) and the periodical transmitted signal
ZCT (t). The Impulse Response (IR) function of the multipath
propagation model is given by

h(t) =
L∑
i=1

Aie
−jϕiδ (t − τi), (3)

where δ (t) is Dirac’s delta function.
We use the cross-correlation, ĥ(t) = ZC∗R (−t) ∗ ZCT (t),

of the received baseband signal ZCR (t), with the transmit-
ted ZC sequence ZCT (t) as the estimation of the impulse
response. Due to the ideal periodic auto-correlation property
of ZC code, where the auto-correlation of ZC sequence is
non-zero only at the point with a delay τ of zero, the estima-
tion ĥ(t) provides a good approximation for the IR function.
In our system, ĥ(t) is sampled with an interval of Ts =

1/fs = 0.021ms , which corresponds to 0.7 cm (343m/s ×
0.021ms) of the propagation distance. The sampled version
of IR estimation, ĥ[n], has 1024 taps with n = 0 ∼ 1023.
Therefore, themaximumunambiguous range of our system is
1024×0.7/2 = 358 cm, which is enough to avoid interferences
from nearby objects. Using the cross-correlation, we obtain
one frame of IR estimation ĥ[n] for each period of 1,024
sound samples (21.33ms), as shown in Figure 3. Each peak
in the IR estimation indicates one propagation path at the
corresponding delay, i.e., a path with a delay of τi will lead
to a peak at the ni = τi/Ts sample point.

5.2 Sound Propagation Model
In our system, there are three different kinds of propa-

gation paths: the structure path, the LOS air path and the
reflection air path, see Figure 2.
Theoretically, we can estimate the delay and amplitude

of different paths based on the speed and attenuation of

sound in different materials and the propagation distance.
Table 2 lists the theoretical propagation delays and ampli-
tude for the six different paths between the speaker and the
two microphones on the example shown in Figure 2. Given
the high speed of sound for the structure-borne sound, the
two structure sound paths (Path 1 and Path 2) have similar
delays even if their path lengths are slightly different. Since
the acoustic attenuation coefficient of metal is close to air
[26], the amplitude of structure sound path is close to the
amplitude of the LOS air path. The LOS air paths (Path 3 and
Path 4) have longer delays than the structure paths due to
the slower speed of sound in the air. The reflection air paths
(Path 5 and Path 6) arrive after the LOS air paths due to the
longer path length. The amplitudes of reflection air paths are
smaller than other two types of paths due to the attenuation
along the reflection and propagation process.

5.3 Sound Propagation Separation
Typical impulse response estimations of the two micro-

phones are shown in Figure 3. Although the theoretical delay
difference between Path 1 and Path 3 is 0.13ms (6 samples),
the time resolution of the interpolated ZC sequence is not
enough to separate Path 1 and Path 3 on Mic 1. Thus, the
first peak in the IR estimation of the Mic 1 represents the
combination of Path 1 and Path 3. Due to the longer distance
from the speaker to Mic 2, the theoretical delay difference
between Path 2 and Path 4 is 0.34ms (17 samples). As a result,
the Mic 2 has two peaks with similar amplitude, which cor-
respond to the structure path (the first peak) and the LOS air
path (the second peak), respectively. By locating the peaks
of the IR estimation of the two microphones, we are able to
separate different propagation paths.

We use the IR estimation of both microphones to identify
different propagation paths. On commercial mobile devices,
the starting point of the auto-correlation function is random
due to the randomness in the hardware/system delay of
sound playback and recording. The peaks corresponding to
the structure propagation may appear at random positions
every time when the system restarts. Therefore, we need
to first locate the structure paths in the IR estimations. Our
key observation is that the two microphones are strictly
synchronized so that their structure paths should appear
at the same position in the IR estimations. Based on this
observation, we first locate the highest peak of Mic 1, which
corresponds to the combination of both Path 1 and Path 3.
Then, we can locate the peaks of Path 2 and Path 4 in the IR
estimation ofMic 2 as the position of Path 2 should be aligned
with Path 1/Path 3. Since we focus on the movement around
the mobile devices, the reflection air path is 5 ∼ 15 samples
(3.5 ∼ 10.7 cm) away from LOS path for both microphones.
In this way, we get the delays of (i) combination of Path
1 and Path 3, (ii) Path 2, (iii) Path 4, and (iv) the range of

-200 -100 0 100
 I (normalized)

-200

-100

0

100

 Q
 (n

or
m

al
iz

ed
)

 With sampling rate increasing
 Without sampling rate increasing

Figure 6: Path coefficient at different sampling rate

reflection air path (Path 5 and Path 6), respectively. We call
this process as path delay calibration, which is performed
once when the system starts transmitting and recording the
sound signal. The path delay calibration is based on the first
ten data segments (213ms) of IR estimation. We use an 1-
nearest neighbor algorithm to confirm the path delays based
on the results of the ten segments.

Note that the calibration time is 14.95ms for one segment
(21.3 ms). Thus, we can perform calibration for each seg-
ment in real-time. To save the computational cost, we only
calibrate the LOS path and structure-borne path delays for
the first ten segments (213ms). The path delay calibration is
only performed once after the system initialization because
holding styles hardly change delays of the structure-borne
path and the LOS path. For the reflection path delay, we
adaptively estimate it as shown in Section 6.2 so that our
system will be robust to different holding styles.

5.4 Path Coefficient Measurement
After finding the delay of each propagation path, we mea-

sure the path coefficient of each path. For a path i with
a delay of ni samples in the IR estimation, the path coef-
ficient is the complex value of ĥ[ni] on the correspond-
ing microphone. The path coefficient indicates how the
amplitude and phase of the given path change with time.
Both the amplitude and the phase of the path coefficient
are important for later movement measurement and touch
detection algorithms.

One key challenge in path coefficient measurement is that
cross-correlations are measured at low sampling rates. The
basic cross-correlation algorithm presented in Section 5.1
produces one IR estimation per frame of 1,024 samples. This
converts to a sampling rate of 48, 000/1, 024 = 46.875 Hz. The
low sampling rate may lead to ambiguity in fast movements
where the path coefficient changes quickly. Figure 6 shows
the path coefficient of a finger movement with a speed of 10
cm/s . We observe that there are only 2∼3 samples in each
phase cycle of 2π . As a phase difference of π can be caused
either by a phase increases of π or a phase decreased by π ,
the direction of phase changing cannot be determined by
such low rate measurements.

Received
baseband signal

Transmitted
baseband signal

 : a fixed
cyclic shift of

…

Low-pass
filter ĥt[n]

x(t)

x(t − 1023)

Z−n

n

Z−1

Z−1

Z−1

Figure 7: Path coefficient measurement for delay n

We use the property of the circular cross-correlation to
upsample the path coefficient measurements. For a given
delay of n samples, the IR estimation at time t is given by
the circular cross-correlation of the received signal and the
transmitted sequence:

ĥt [n] =
N ′ZC−1∑
l=0

ZCR[t + l] × ZC∗T [(l − n) mod N ′ZC] (4)

This is equivalent to take the summation of N ′ZC point of
the received signal multiplied by a conjugated ZC sequence
cyclically shifted by n points. The key observation is that
ZC sequence has constant power, i.e., ZC[n] × ZC∗[n] =
1,∀n. Thus, each point in the N ′ZC multiplication results
in Eq. (4) contributes equally to the estimation of ĥt [n]. In
consequence, the summation over a window with a size of
N ′ZC can start from any value of t . Instead of advancing the
value t by a full frame of 1,024 sample points as in ordinary
cross-correlation operations, we can advance t one sample
each time. In this way, we can obtain the path coefficient
with a sampling rate of 48 kHz, which gives the details of
changes in path coefficient as shown in Figure 6.

The above upsampling scheme incurs high computational
cost. To obtain all path coefficients ĥt [n] for delay n (n = 0 ∼
1023), it requires 48, 000 dot productions per second and each
dot product is performed with two vectors of 1,024 samples.
This cannot be easily carried out bymobile devices. To reduce
the computational cost, we observe that not all taps in ĥt [n]
are useful. We are only interested in the taps corresponding
to the structure propagation paths and the reflection air paths
within a distance of 15 cm. Therefore, instead of calculating
the cross-correlation, we just calculate the path coefficients
at given delays using a fixed cyclic shift of n. Figure 7 shows
the process of measuring the path coefficient at a given delay.
First, we synchronize the transmitted signal and received
signal by cyclically shifting the transmitted signal with a
fixed offset of ni corresponding to the delay of the given path.
Second, we multiply each sample of the received baseband
signal with the conjugation of the shifted transmitted sample.
Third, we use a moving average with a window size of 1, 024
to sum the complex values and get the path coefficients.
Note that the moving average can be carried out by just
two additions per sample. Fourth, we use low-pass filter
to remove high frequency noises caused by imperfections

of the interpolated ZC sequence. Finally, we get the path
coefficient at 48 kHz sampling rate. After the optimization,
measuring the path coefficient at a given delay only incurs
one multiplication and two additions for each sample.

6 MOVEMENT MEASUREMENT
6.1 Finger Movement Model
Finger movements incur both magnitude and phase

changes in path coefficients. First, the delay for the peak
corresponding to the reflection path of the finger changes
when the finger moves. Figure 8(a) shows the magnitude of
the IR estimations when the finger first moves away from the
microphone and then moves back. The movement distance
is 10 cm on the surface of the mobile device. A “hot” region
indicates a peak at the corresponding distance in the IR esti-
mation. While we can observe there are several peaks in the
raw IR estimation and they change with the movement, it is
hard to discern the reflection path as it is much weaker than
the LOS path or the structure path. To amplify the changes,
we take the difference of the IR estimation along the time
axis to remove these static paths. Figure 8(b) shows the re-
sulting differential IR estimations. We observe that the finger
moves away from the microphone during 0.7 to 1.3 seconds
and moves towards to the microphone from 3 to 3.5 seconds.
The path length changes about 20 cm (10 × 2) during the
movement. In theory, we can track the position of the peak
corresponding to the reflection path and measure the finger
movement. However, the position of the peak is measured in
terms of the number of samples, which gives a low resolution
of around 0.7 cm per sample. Furthermore, estimation of the
peak position is susceptible to noises, which leads to large
errors in distance measurements.

We utilize phase changes in the path coefficient to measure
movement distance so that we can achieve mm-level distance
accuracy. Consider the case the reflection path of the finger
is path i and its path coefficient is:

ĥt [ni] = Aie
−j (ϕi+2π

di (t)
λc

), (5)

where di (t) is the path length at time t . The phase for path
i is ϕi (t) = ϕi + 2π di (t)

λc
, which changes by 2π when di (t)

changes by the amount of sound wavelength λc = c/fc
(≈1.69 cm) [28]. Therefore, we can measure the phase change
of the reflection path to obtain mm-level accuracy in the path
length di (t).

6.2 Reflection Path Delay Estimation
The first step for measuring the finger movement is to

estimate the delay of the reflection path. Due to the non-
negligible main lobe width of the auto-correlation function,
multiple IR estimations that are close to the reflection path
have similar changes when the finger moves. We need to

0 1 2 3 4
 Time (seconds)

20

40

60

80

 P
at

h
le

ng
th

 (c
m

)

(a) Magnitude of the raw IR estimations

0 1 2 3 4
 Time (seconds)

20

40

60

80

 P
at

h
le

ng
th

 (c
m

)

(b) Magnitude of differential IR estimations
Figure 8: IR estimations for finger movement.

adaptively select one of these IR estimations to represent
the reflection path so that noises introduced by side lobes of
other paths can be reduced.
Our heuristic to determine the delay of the

reflection path is based on the observation that
the reflection path will have the largest change of
magnitude compared to other paths. Consider the
changes of magnitude in ĥt [ni]: ���ĥt [ni] − ĥt−∆t [ni]

��� =����Ai

(
e−j (ϕi+2π

di (t)
λc

)
− e−j (ϕi+2π

di (t−∆t)
λc

)
) ����. Here we assume

thatAi does not change during the short period of ∆t . When
the delay ni is exactly the same as of the reflection path,
the magnitude of ���ĥt [ni] − ĥt−∆t [ni]

��� is maximized. This is
because the magnitude of |Ai | is maximized at the peak
corresponds to the auto-correlation of the reflection path,
and the magnitude of

����e
−j (ϕi+2π

di (t)
λc

)
− e−j (ϕi+2π

di (t−∆t)
λc

) ���� is
maximized due to the largest path length change at the
reflection path delay.

In our implementation, we select l path coefficientswith an
interval of three samples between each other as the candidate
of reflection paths. The distance between these candidate
reflection paths and the structure path is determined by size
of the phone, e.g., 5 ∼ 15 samples for the bottomMic.We keep
monitoring the candidate path coefficients and select the
path with the maximum magnitude in the time differential
IR estimations as the reflection path. When the finger is
static, our system still keeps track of the reflection path . In
this way, we can use the changes in the selected reflection
path to detect whether the finger moves or not.

6.3 Additive Noise Mitigation
Although the adaptive reflection path selection scheme

gives high SNR measurements on path coefficients, the addi-
tive noises from other paths still interfere with the measured
path coefficients. Figure 9 shows the result of the trace of the
complex path coefficient with a finger movement. In the ideal
case, the path coefficients is ĥt [ni] = Aie

−j (ϕi+2πdi (t)/λc)

-400 -380 -360 -340 -320 -300
 I (normalized)

-460

-440

-420

-400

-380

 Q
 (n

or
m

al
iz

ed
)

 P O

 W EKF
 W/O EKF

Figure 9: Path coefficients for finger reflection path.

with a constant attenuation of Ai in a short period. There-
fore, the trace of path coefficients should be a circle in the
complex plane. However, due to additive noises, the trace in
Figure 9 is not smooth enough for later phase measurements.
We propose to use the Extended Kalman Filter (EKF), a

non-linear filter, to track the path coefficient and reduce
the additive noises. The goal is to make the resulting path
coefficient closer to the theoretical model so that the phase
change incurred by the movement can be measured with
higher accuracy. We use the sinusoid model to predict and
update the signal of both I/Q components [8]. To save the
computational resources, we first detect whether the finger is
moving or not as shown in Section 6.2. When we find that the
finger is moving, we initialize the parameters of the EKF and
perform EKF. We also downsample the path coefficient to
3 kHz to make the EKF affordable for mobile devices. Figure
9 shows that results after EKF are much smoother than the
original signal.

6.4 Phase Based Movement Measurement
We use a curvature-based estimation scheme to measure

the phase change of the path coefficient. Our estimation
scheme assumes that the path coefficient is a superposition
of a circularly changing dynamical component, which is
caused by the moving finger, and a quasi-static component,
which is caused by nearby static objects [28, 29, 34]. The
algorithm estimates the phase of the dynamic component by
measuring the curvature of the trace on the complex plane.
The curvature-based scheme avoids the error-prone process
of estimating the quasi-static component in LEVD [28] and
is robust to noise interferences.

Suppose that we use a trace in the two-dimensional plane
y (t) = (Iĥt ,Qĥt

) to represent the path coefficient of the
reflection. As shown in Figure 9, the instantaneous signed
curvature can be estimated as:

k (t) =
det(y ′(t),y ′′(t))

y ′(t)

3
, (6)

where y ′(t) = dy (t)/dt is the first derivative of y (t) with
respect to the parameter t , and det is taking the determinant

0 1 2 3
 Time (seconds)

-12

0

12

24 D
el

ay
 s

am
pl

es

(a) Magnitude of differential IR estimations when touch and
release at 7 cm away from speaker

0 1 2 3
 Time (seconds)

-12

0

12

24 D
el

ay
 s

am
pl

es

(b) Magnitude of differential IR estimations when touch and
release at 1 cm away from speaker

Figure 10: Touching on different locations
of the given matrix. We assume that the instantaneous cur-
vature remains constant during the time period t − 1 ∼ t and
the phase change of the dynamic component is:

∆θ tt−1 = 2 arcsin
k (t) ��y (t) −y (t − 1)��

2
. (7)

The path length change for the time period 0 ∼ t is:

di (t) − di (0) = −
∑t

i=1 ∆θ
i
i−1

2π
× λc , (8)

where di (t) is the path length from the speaker reflected
through the finger to the microphone.

6.5 From Path Length to Movements
The path length change for the reflection air path can

be measured on both microphones. Depending on the type
of gestures and the placement of the microphones, we can
use the path length change to derive the actual movement
distance. For example, for the phone in Figure 2, we can use
the path length change of the reflection air path on the bottom
microphone to measure the finger movement distance for
the scrolling gesture (up/down movement). This is because
the length of the reflection path on the bottom microphone
changes significantly when the finger moves up/down on
the back of the phone. The actual movement distance can
be calculated by multiplying the path length change with a
compensating factor as described in Section 8. For the gesture
of swiping left/right, we can use path length changes of two
microphones to determine the swiping direction, as swiping
left and right will introduce the same path length change
pattern on the bottom microphone but different path length
change directions on the top microphone.

7 TOUCH MEASUREMENT
7.1 Touch Signal Pattern
Touching the surface with fingers will change both the

air-borne propagation and structure-borne propagation of
the sound. When performing the tapping action, the finger

movement in the air will change the air-borne propagation of
the sound. Meanwhile, when the finger contacts the surface
of the phone, the force applied on the surface will change the
vibration pattern of the structure of the phone, which leads
to changes in the structure-borne signal [25]. In other words,
the structure-borne sound is able to distinguish whether the
finger is hovering above the surface with a mm-level gap or is
pressing on the surface. In VSkin, we mainly use the changes
in the structure-borne signal to sense the finger touching,
as they provide distinctive information about whether the
finger touches the surface or not. However, when force is
applied at different locations on the surface, the changes
of the structure-borne sound caused by touching will be
different in magnitude and phase. Existing schemes only
use the magnitude of the structure-borne sound [25], which
has different change rates at different touch positions. They
rely on the touchscreen to determine the position and the
accurate time of the touching to measure the force-level of
touching [25]. However, neither the location nor the time
of the touching is available for VSkin. Therefore, the key
challenge in touching sensing for VSkin is to perform joint
touch detection and touch localization.

Touching events lead to unique patterns in the differential
IR estimation. As an example, Figure 10 shows the differen-
tial IR estimations that are close to the structure-borne path
of the top microphone in Figure 2, when the user touches the
back of the phone. They-axis is the number of samples to the
structure-borne path, where the structure-borne path (Path
2 in Section 5.3) is at y = 0. When force is applied on the
surface, the width of the peak corresponding to the structure-
borne path increases. This leads to a small deviation in the
peak position in the path coefficient changes from the orig-
inal peak of the structure-borne propagation. Figure 10(a)
shows the resulting differential IR estimations when user’s
finger touches/leaves the surface of the mobile device at a
position that is 7 cm away from the rear speaker. We observe
that the “hottest” region is not at the original peak of the
structure-borne propagation. This is due to the force applied
on the surface changes the path of the structure-borne signal.
To further explore the change of the structure-borne propa-
gation, we ask the user to perform finger tapping on eleven
different positions on the back of the device and measure
the position of peaks in the path coefficient changes. Figure
11 shows the relationship between the touching position
and the resulting peak position in coefficient changes, where
the peak position is measured by the number of samples
to the original structure-borne path. We observe that the
larger the distance between the touching position and the
speaker, the larger the delay in coefficient changes to the
original structure-borne path (darker color means a larger
delay). Thus, we utilize the magnitude and delay of differen-
tial IR estimations to detect and localize touch events. Note

Rear
camera

Rear
speaker

Top Mic Bottom
Mic

369

14710

11 8 5 2

Figure 11: Touching position clustering.
that the differential IR estimations are based on complex-
valued path coefficients. If we ignore the phase and only use
the magnitude of path coefficients, there are some locations
where the phase change caused by the touch event incurs
little magnitude change so that the touch event cannot be
reliably detected. Similar phenomenon also appears in the
case of using the magnitude of WiFi signals to detect small
movements, such as human respiration [27].
7.2 Touch Detection and Localization
We perform joint touch detection and localization using

the differential IR estimation around the structure path. Since
the structure-borne sound and air-borne sound are mixed on
the bottom microphone as shown in Section 5.3, we only use
the path coefficients of the topmicrophone to sense touching.
To detect touch events, we first calculate the time difference
of the IR estimation in a similar way as in Section 6.2. We
then identify the delay with the maximum magnitude of
the time differential IR estimation and use the maximum
magnitude as the indicator of the touch event. We use a
threshold based scheme to detect touch and release events,
i.e., once the magnitude of differential IR estimation exceeds
the threshold, we determine that the user either touches
the surface or releases the finger. The detection threshold is
dynamically calculated based on the background noise level.
Our touch detection scheme keeps the state of touching and
toggles between touch and release based on the detected
events. Touch detection can work when the user holds the
phone with his/her hand. Given that the pose of the holding
hand does not change, we can still reliably detect touches
using the differential IR estimation.
To determine the position of the touch, we use the delay

(calculated in terms of samples) of the peak in differential
IR estimation. We divide the back surface of the phone into
three regions based on the distance to the speaker. The points
in different regions are marked with different colors in Figure
11. Using the delay of the peak in differential IR estimation,
we can identify the region that the user touches with an
accuracy of 87.8%.

8 SYSTEM EVALUATION
8.1 Implementation
We implemented VSkin on the Android platform. Our

system works as a real time APP that allows user to per-
form touch gestures, e.g., scrolling, swiping, and tapping, on

the surfaces of Android phones. Our implementation and
evaluation mainly focused on Back-of-Device operations. To
achieve better efficiency, we implement most signal process-
ing algorithms as C functions using Android NDK and the
signal processing is performed on data segments with a size
of 1,024 samples, which is identical to the length of interpo-
lated ZC sequence. We conducted experiments on Samsung
Galaxy S5 using its rear speaker, top microphone, and bottom
microphone in typical office and home environments. In the
experiments, the users interacted with the phone using their
bare hands without wearing any accessory.

8.2 Evaluations on Finger Movements
VSkin achieves an average movement distance error of 3.59

mm when the finger moves for 6 cm on the back of the phone.
We attached a tape with a length of 6 cm on the back of the
phone and asked the users to move their fingers up/down
along the tape while touching the surface of the phone. We
determine the ground truth of the path length change using
a ruler, which is 10 cm for the 6 cm movement. Our system
measures the movement distance by the bottom microphone
and the rear speaker, using the compensation factor of 0.6 to
convert the measured path length change into the movement
distance. Our simulation results show that the compensation
factor is in the range of 0.54 ∼ 0.6 for different positions
on the back of the phone. Thus, fixing the factor to 0.6 will
not significantly influence the accuracy. Figure 12(a) shows
the Cumulative Distribution Function (CDF) of the distance
measurement error for 400 movements. The average move-
ment distance errors of VSkin, without delay selection and
without delay selection and EKF are 3.59mm, 4.25mm, and
7.35mm, respectively. The algorithm for delay selection and
EKF reduces the measurement error by half. The standard
deviation of the error is 2.66 mm and the 90th percentile
measurement error is 7.70mm, as shown in Figure 12(a).
VSkin is robust for objects with different diameters from

1 cm to 2 cm. Since user fingers have different diameters
and introduce different reflection amplitude in sound sig-
nals, we use pens with three different diameters to measure
the robustness of VSkin. Figure 12(b) shows the CDF of the
movement distance error averaged by 200 movements of 6
cm. The average distance errors for pens with 1 cm, 1.5 cm,
and 2 cm diameters are 6.64mm, 5.14mm, and 4.40mm, re-
spectively. Objects with a small diameter of 1 cm only incur
a small increase in the distance error of 2.24mm.
VSkin is robust for different holding styles. We evaluated

our system under two different use cases: holding the phone
with their hands and putting it on the table. We asked the
users to use their own holding styles during the experiments.
The average distance error for different users is 6.64 mm
when putting the phone on the table. Holding the phone in

0 4 8 12 16
 Error (mm)

0

0.2

0.4

0.6

0.8

1
 C

D
F

 VSkin
 Without delay selection
 Without delay selection and EKF

(a) CDF for different algorithms

0 4 8 12 16 20
 Error (mm)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 2cm
 1.5cm
 1cm

(b) CDF for different diameters

0 4 8 12 16 20
 Error (mm)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 Music (75dB)
 Speech (70dB)
 Music from the same speaker (65dB)

(c) CDF for different noise types

0 4 8 12 16 20
 Error (mm)

0

0.2

0.4

0.6

0.8

1

 C
D

F

 Put on the table
 Hold in hand

(d) CDF for different use cases

2 4 6 8 10 12
 Speed (cm/s)

0
5

10
15
20
25
30
35
40

 E
rr

or
 (m

m
)

 With upsampling
 Without upsampling

(e) Error for different speeds

5 10 15 20 25
 Jamming distance (cm)

0

5

10

15

20

25

 E
rr

or
 (m

m
)

(f) Error for different jamming distances
Figure 12: Micro benchmark results for movements

hand only increases the average distance error by 3.42mm,
as shown in Figure 12(d).
VSkin can reliably measure the movement distance with

speeds from 2 cm/s to 12 cm/s . We asked the user to move
his finger at different speeds for a distance of 6 cm. Figure
12(e) shows the distribution of the movement distance errors
with respect to the movement speeds. The average measure-
ment error decreases from 11.00mm to 4.64mm when using
upsampling. Especially, when the moving speed is higher
than 8 cm/s , the average distance error decreases by about
half, from 17.57mm to 8.29mm, when applying upsampling.
This shows our upsampling scheme significantly improves
the accuracy and robustness when the object is moving at
high speeds.

VSkin is robust to interfering movements that are 5 cm away
from the phone. To evaluate the anti-jamming capacity of
VSkin, we asked other people to perform jamming move-
ments, i.e., pushing and pulling hand repeatedly at different
distances, while the user is performing the movement. As
shown in Figure 12(f), VSkin achieves an average move-
ment distance error of 9.19mm and 3.98mm under jamming
movements that are 5 cm and 25 cm away from the device,
respectively. Jamming movements introduce only a small
increase in the measurement error, due to the nice auto-
correlation property of the ZC sequence that can reliably
separate activities at different distances.
VSkin is robust to background audible acoustic noises and

achieves an average movement distance error of 6.22mm under
noise interferences.We conducted our experiments in three
different environments with audible acoustic noises: i) an
indoor environment with pop music being played (75 dB on
average); ii) a room with people talking being played (70 dB

on average); iii) playing music from the same speaker that
used by VSkin (65 dB on average). As shown in Figure 12(c),
the average movement distance errors are 4.64mm, 5.93mm
and 8.08mm, respectively. Note that VSkin does not block
the playback functions of the speaker.

8.3 Evaluations on Touch Measurements
VSkin achieves a touch detection rate of 99.64% for different

positions at the back of the mobile phone. We asked users
to touch the back of the mobile phone for 100 times at the
11 different positions in Figure 11. VSkin missed only four
touches among the 1100 tests. This gives a false negative
rate of merely 0.36%. Since touching on the position close to
the speaker causes more significant changes in the structure-
borne signal, these four false detections are all at the position
10 and 11 in Figure 11. VSkin also has low false positive ra-
tios. When placed in a silent environment, VSkin made no
false detection of touching for 10 minutes. When perform-
ing jamming movements 5 cm away from the device, VSkin
only made three false detections of touching for 10 minutes.
Note that VSkin detects exactly the contact event, as users
only moved their fingertip for a negligible distance in the
touching experiments (measured air path length change of
only 0.3mm). In comparison, touch detection that only uses
the magnitude of path coefficients has a lower detection rate
of 81.27% as discussed in Section 7.1.

VSkin achieves an average accuracy of 87.82% for classifying
touches to three different regions of the phone.We divide the
11 different positions into three different classes as shown
by different colors in Figure 11. We asked users to touch the
back of the phone at these 11 different positions for 100 times
in each position. VSkin uses the delay of the structure path

1 2 3 4 5 6 7 8 9 10 11
 Position

0

20

40

60

80

100

 L
oc

al
iz

at
io

n
ac

cu
ra

cy
 (%

)

(a) Accuracy for different positions

S5 Mate7 Note3 S7
 Smartphone types

0

5

10

15

 E
rr

or
 (m

m
)

(b) Movement error for different phones

S5 Mate7 Note3 S7
 Smartphone types

90

92

94

96

98

100

 T
ou

ch
 a

cc
ur

ac
y

(%
)

(c) Touch accuracy for different phones
Figure 13: Micro benchmark results for touching and generalization

(a) Path delay calibration

Down conversion Cross-correlation Total
Time 0.363ms 14.582ms 14.945ms

(b) Movement and touch sensing

Down
conversion Upsampling Phase

measurement Total

Time 0.363ms 3.249ms 0.324ms 3.939ms

Table 3: Processing time
(a) Power consumption

CPU Audio Total
Power 121.3mW 370mW 491.3mW

(b) Power consumption overhead

Backlight Web Browsing Gaming
Power overhead 47.8% 25.4% 15.4%

Table 4: Power consumption

change to classify the positions into three different classes
and the results are shown in Figure 13(a). The localization
accuracies of position 2, 6, and 9 are lower than other posi-
tions because these three positions are not on the path of
propagation from the rear speaker to the top microphone.

8.4 Latency and Power Consumption
VSkin achieves a latency of 4.83 ms on commercial smart-

phones. We measured the processing time for a Samsung S5
with Qualcomm Snapdragon 2.5GHz quad-core CPU. Our
system processes sound segments with a size of 1,024 sam-
ples (time duration of 21.3ms at 48 kHz sampling rate). To
reduce the processing time, we only perform the path delay
calibration on the first ten data segments and later process-
ing does not require recalibration. Furthermore, we use FFT
to accelerate the cross-correlation. The processing time of
one segments is 14.58ms and 3.93ms for the computational
heavy path delay calibration process and the light-weight
movement/touch-sensing algorithm. With processing time
for other operations, the overall latency for VSkin to process
21.3ms of data is 4.832ms on average. Therefore, VSkin can
perform realtime movement and touch sensing on commod-
ity mobile devices.

VSkin incurs a power consumption of 491.3mW on com-
mercial smartphones. We use Powertutor [36] to measure
the power consumption of our system on Samsung Galaxy
S5. Without considering the LCD power consumption, the
power consumptions of CPU and Audio are 121.3mW and
370mW , respectively. To measure the power consumption
overhead of VSkin, we measured the average power con-
sumption in three different states with VSkin: 1) Backlight,
with the screen displaying the results, 2) Web Browsing,
surfing the Internet with the WiFi on, 3) Gaming, playing
mobile games with the WiFi on. The power consumption
overheads for these states are 47.8%, 25.4%, and 15.4%, re-
spectively. More than 74.2% additional power consumption
comes from the speaker hardware. One possible solution is to
design low-power speakers that are specialized for emitting
ultrasounds.

8.5 Discussions
Different phone setups: VSkin can work on different

types of smartphones.We conducted our experiments on four
different smartphones, Samsung S5, Huawei Mate7, Samsung
Note3, and Samsung S7, with parameters based on the loca-
tions of speaker and microphones. As shown in Figure 13(b),
VSkin achieves an average movement distance error of 3.59
cm, 2.96 cm, 4.02 cm and 6.05 cm on the four models, respec-
tively. VSkin also achieves more than 98% touch accuracy
for all types of smartphones, as shown in Figure 13(c).

Locations of speakers and microphones: The speak-
ers on Samsung S5 and Huawei Mate7 are on the back of
the smartphones, while the speakers on Samsung S7 and
Samsung Note3 are at the bottom of the smartphones. Our
experimental results show that VSkin achieves higher accu-
racy on S5/Mate7 than S7/Note3. Therefore, the locations of
the speaker and microphones are critical to the VSkin perfor-
mance. The current design of VSkin requires one speaker and
two microphones, with one microphone close to the speaker
to measure the movement and the other at the opposite side
of the speaker to measure the touch. Further generalization
of VSkin to different speaker/microphone setups is left for
future study.

(a) VSkinScrolling (b) VSkinSwiping

Figure 14: User interface for case study

1 2 3 4 5 6 7 8 9 10
 Users

0

0.2

0.4

0.6

0.8

1

1.2

 M
ea

n
m

ov
em

en
t t

im
e

(s
) Touchscreen

 VSkinScrolling

(a) VSkinScrolling

1 2 3 4 5 6 7 8 9 10
 Users

0.6

0.9

1.2

1.5

 M
ea

n
m

ov
em

en
t t

im
e

(s
) Touchscreen

 VSkinSwiping

(b) VSkinSwiping
Figure 15: Movement time for different APPs

Privacy concerns: Since VSkin uses microphones to
record the sound signal, our system may lead to potential
privacy leakage issues. One possible solution is to keep the
recorded sound signal within the operating system and only
provide touch events to applications.

8.6 Case Study
We developed two VSkin-based APPs, called VSkin-

Scrolling and VSkinSwiping, to further evaluate the per-
formance of VSkin. We invited ten graduate students (eight
males and two females with ages in the range of 22 to 27) to
hold the phone with their hands and use our APPs. None of
them had ever used BoD interactions before the case study.

8.6.1 VSkinScrolling: Scrolling gesture.

Application usage: VSkinScrolling enables scrolling ges-
ture on the back surface of the device, as shown in Figure
14(a). Users hold the phone with their hands, first touch
the back of the device as the trigger of VSkinScrolling and
then drag their finger up/down to control the scrollbar. To
improve the user experience, the ball on the scrollbar will
change color once the user touches the back surface. We
use the top microphone for touch detection and the bottom
microphone to measure the scrolling distance and direction.
The left scroll bar is controlled by the touchscreen, and the
right scroll bar is controlled by VSkinScrolling.

Performance evaluation: VSkinScrolling achieves usabil-
ity comparable to the touchscreen for the scrolling gesture. In
the experiments, we first taught users the usage of VSkin-
Scrolling and let them practice for five minutes. We then
asked the users to perform the task of moving the scroll-
bar to a given position within an error range of ±5%. We

compare the movement time (from touching the surface to
successfully moving to the target) of VSkinScrolling and the
front touchscreen. Each participant performed the task for 20
times using VSkinScrolling and the touchscreen. As shown
in Figure 15(a), the mean movement time for VSkinScrolling
and touchscreen are 757.6 ms and 564.5 ms , respectively.
VSkinScrolling is only 193.1ms slower than the touchscreen.
Most of the participants were surprised that they could per-
form the scrolling gestures on the back of the device without
any hardware modification.

8.6.2 VSkinSwiping: Swiping gesture.

Application usage: VSkinSwiping enables swiping gesture
on the back of the mobile device, as shown in Figure 14(b).
Users hold the phone with their hands, first touch the back
of the device as the trigger of VSkinSwiping and then per-
form the swiping gesture to classify pictures. We use the top
microphone for touch detection and both microphones to
measure the swiping direction.

Performance evaluation: VSkinSwiping achieves usabil-
ity comparable to the touchscreen for the swiping gesture. We
performed the same practicing step before the test as in
the case of VSkinScrolling. We asked the users to use the
left/right swiping gesture to classify random pictures of
cats/dogs (ten pictures per task), i.e., swipe left when saw
a cat and swipe right when saw a dog. The mean move-
ment time is defined as the average time used for classifying
one picture using the swiping gesture. Each participant per-
formed the task for 20 times using VSkinSwiping and the
touchscreen. As shown in Figure 15(b), the mean movement
time of one swiping gesture for VSkinSwiping and touch-
screen are 1205ms and 1092ms , respectively. On average,
VSkinSwiping is only 112.7ms slower than the touchscreen.
The average accuracy of swiping direction recognition of
VSkinSwiping is 94.5%.

9 CONCLUSIONS
In this paper, we develop VSkin, a new gesture-sensing

scheme that can perform touch sensing on the surface of
mobile devices. The key insight of VSkin is that we can
measure the touch gestures with a high accuracy using both
the structure-borne and the air-borne acoustic signals. One
of our future work direction is to extend VSkin to flat surfaces
near the device, e.g., sensing touch gestures performed on
the table by placing a smartphone on it.

ACKNOWLEDGMENTS
We would like to thank our anonymous shepherd and re-

viewers for their valuable comments. This work is partially
supported by National Natural Science Foundation of China
under Numbers 61472185, 61373129, and 61321491, JiangSu
Natural Science Foundation No. BK20151390, and Collabora-
tive Innovation Center of Novel Software Technology.

REFERENCES
[1] Md Tanvir Islam Aumi, Sidhant Gupta, Mayank Goel, Eric Larson, and

Shwetak Patel. 2013. Doplink: Using the doppler effect for multi-device
interaction. In Proceedings of ACM UbiComp.

[2] Ian H Chan. 2010. Swept Sine Chirps for Measuring Impulse Response.
Stanford Research Systems.

[3] Ke-Yu Chen, Daniel Ashbrook, Mayank Goel, Sung-Hyuck Lee, and
Shwetak Patel. 2014. AirLink: sharing files between multiple devices
using in-air gestures. In Proceedings of ACM UbiComp.

[4] Mayank Goel, JacobWobbrock, and Shwetak Patel. 2012. GripSense: us-
ing built-in sensors to detect hand posture and pressure on commodity
mobile phones. In Proceedings of ACM UIST.

[5] Emilio Granell and Luis A Leiva. 2017. βTap: back-of-device tap input
with built-in sensors. In Proceedings of of MobileHCI.

[6] Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. 2012.
Soundwave: using the doppler effect to sense gestures. In Proceedings
of ACM CHI.

[7] Chris Harrison, Julia Schwarz, and Scott E Hudson. 2011. TapSense:
enhancing finger interaction on touch surfaces. In Proceedings of ACM
UIST.

[8] Jouni Hartikainen, Arno Solin, and Simo Särkkä. 2011. Optimal filtering
with Kalman filters and smoothers. Aalto University School of Science.

[9] Seongkook Heo and Geehyuk Lee. 2011. Forcetap: extending the
input vocabulary of mobile touch screens by adding tap gestures. In
Proceedings of ACM MobileHCI.

[10] Sungjae Hwang, Andrea Bianchi, and Kwang-yun Wohn. 2013. Vib-
Press: estimating pressure input using vibration absorption on mobile
devices. In Proceedings of ACM MobileHCI.

[11] Huy Viet Le, Sven Mayer, Patrick Bader, and Niels Henze. 2017. A
smartphone prototype for touch interaction on the whole device sur-
face. In Proceedings of of MobileHCI.

[12] Jian Liu, Yingying Chen, Marco Gruteser, and Yan Wang. 2017. Vib-
Sense: Sensing Touches on Ubiquitous Surfaces through Vibration. In
Proceedings of IEEE SECON.

[13] Jian Liu, Chen Wang, Yingying Chen, and Nitesh Saxena. 2017. Vib-
Write: Towards Finger-input Authentication on Ubiquitous Surfaces
via Physical Vibration. In Proceedings of ACM CCS.

[14] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath
Gollakota. 2016. FingerIO: Using Active Sonar for Fine-Grained Finger
Tracking. In Proceedings of ACM CHI.

[15] Makoto Ono, Buntarou Shizuki, and Jiro Tanaka. 2015. Sensing touch
force using active acoustic sensing. In Proceedings of ACM TEI.

[16] Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin Li, and Kun
Tan. 2007. Beepbeep: a high accuracy acoustic ranging system using
COTS mobile devices. In Proceedings of ACM SenSys.

[17] Corey R Pittman and Joseph J LaViola Jr. 2017. Multiwave: Complex
Hand Gesture Recognition Using the Doppler Effect. In Proceedings of
ACM GI.

[18] Branislav M Popovic. 1992. Generalized chirp-like polyphase se-
quences with optimum correlation properties. IEEE Transactions on
Information Theory 38, 4 (1992), 1406–1409.

[19] Swadhin Pradhan, Eugene Chai, Karthikeyan Sundaresan, Lili Qiu,
Mohammad A Khojastepour, and Sampath Rangarajan. 2017. RIO: A
Pervasive RFID-based Touch Gesture Interface. In Proceedings of ACM
MobiCom.

[20] A Rodrìguez Valiente, A Trinidad, JR García Berrocal, C Górriz, and
R Ramírez Camacho. 2014. Extended high-frequency (9–20 kHz) au-
diometry reference thresholds in 645 healthy subjects. International
journal of audiology 53, 8 (2014), 531–545.

[21] Wenjie Ruan, Quan Z Sheng, Lei Yang, Tao Gu, Peipei Xu, and Longfei
Shangguan. 2016. AudioGest: enabling fine-grained hand gesture
detection by decoding echo signal. In Proceedings of ACM Ubicomp.

[22] Shaikh Shawon Arefin Shimon, Sarah Morrison-Smith, Noah John,
Ghazal Fahimi, and Jaime Ruiz. 2015. Exploring user-defined back-of-
device gestures for mobile devices. In Proceedings of ACM MobileHCI.

[23] Ke Sun, Wei Wang, Alex X. Liu, and Haipeng Dai. 2018. Depth aware
finger tapping on virutal displays. In Proceedings of ACM MobiSys.

[24] Thomas L Szabo and Junru Wu. 2000. A model for longitudinal and
shear wave propagation in viscoelastic media. The Journal of the
Acoustical Society of America 107, 5 (2000), 2437–2446.

[25] Yu-Chih Tung and Kang G Shin. 2016. Expansion of human-phone
interface by sensing structure-borne sound propagation. In Proceedings
of ACM MobiSys.

[26] Michael Vorländer. 2007. Auralization: fundamentals of acoustics, mod-
elling, simulation, algorithms and acoustic virtual reality. Springer
Science & Business Media.

[27] Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang,
Dan Wu, Tao Gu, and Bing Xie. 2016. Human respiration detection
with commodity WiFi devices: do user location and body orientation
matter?. In Proceedings of ACM Ubicomp.

[28] Wei Wang, Alex X. Liu, and Ke Sun. 2016. Device-free gesture tracking
using acoustic signals. In Proceedings of ACM MobiCom.

[29] Teng Wei and Xinyu Zhang. 2015. mTrack: High-Precision Passive
Tracking Using Millimeter Wave Radios. In Proceedings of ACM Mobi-
Com.

[30] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell, and
Chia Shen. 2007. Lucid touch: a see-through mobile device. In Proceed-
ings of ACM UIST.

[31] Pui Chung Wong, Hongbo Fu, and Kening Zhu. 2016. Back-Mirror:
back-of-device one-handed interaction on smartphones. In Proceed-
ings of Symposium on Mobile Graphics and Interactive Applications,
SIGGRAPH ASIA.

[32] Xiang Xiao, Teng Han, and Jingtao Wang. 2013. LensGesture: aug-
menting mobile interactions with back-of-device finger gestures. In
Proceedings of ACM ICMI.

[33] Sangki Yun, Yi-Chao Chen, and Lili Qiu. 2015. Turning a Mobile Device
into a Mouse in the Air. In Proceedings of ACM MobiSys.

[34] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang
Mao. 2017. Strata: Fine-Grained Acoustic-based Device-Free Tracking.
In Proceedings of ACM MobiSys.

[35] Cheng Zhang, Aman Parnami, Caleb Southern, Edison Thomaz,
Gabriel Reyes, Rosa Arriaga, and Gregory D Abowd. 2013. BackTap:
robust four-point tapping on the back of an off-the-shelf smartphone.
In Proceedings of ACM UIST.

[36] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, ZhaoguangWang, Robert P.
Dick, Zhuoqing Morley Mao, and Lei Yang. 2010. Accurate online
power estimation and automatic battery behavior based power model
generation for smartphones. In Proceedings of IEEE CODES+ISSS.

[37] Zengbin Zhang, David Chu, Xiaomeng Chen, and Thomas Moscibroda.
2012. Swordfight: Enabling a new class of phone-to-phone action
games on commodity phones. In Proceedings of ACM MobiSys.

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Transmission Signal Design
	4.1 Baseband Sequence Selection
	4.2 Modulation and Demodulation

	5 Sound Path Separation and Measurement
	5.1 Multipath Propagation Model
	5.2 Sound Propagation Model
	5.3 Sound Propagation Separation
	5.4 Path Coefficient Measurement

	6 Movement Measurement
	6.1 Finger Movement Model
	6.2 Reflection Path Delay Estimation
	6.3 Additive Noise Mitigation
	6.4 Phase Based Movement Measurement
	6.5 From Path Length to Movements

	7 Touch Measurement
	7.1 Touch Signal Pattern
	7.2 Touch Detection and Localization

	8 System Evaluation
	8.1 Implementation
	8.2 Evaluations on Finger Movements
	8.3 Evaluations on Touch Measurements
	8.4 Latency and Power Consumption
	8.5 Discussions
	8.6 Case Study

	9 Conclusions
	References

