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ABSTRACT
Robust speech enhancement is considered as the holy grail of audio
processing and a key requirement for human-human and human-
machine interaction. Solving this task with single-channel, audio-
only methods remains an open challenge, especially for practical
scenarios involving a mixture of competing speakers and background
noise. In this paper, we propose UltraSE, which uses ultrasound sens-
ing as a complementary modality to separate the desired speaker’s
voice from interferences and noise. UltraSE uses a commodity mo-
bile device (e.g., smartphone) to emit ultrasound and capture the
reflections from the speaker’s articulatory gestures. It introduces
a multi-modal, multi-domain deep learning framework to fuse the
ultrasonic Doppler features and the audible speech spectrogram. Fur-
thermore, it employs an adversarially trained discriminator, based
on a cross-modal similarity measurement network, to learn the cor-
relation between the two heterogeneous feature modalities. Our
experiments verify that UltraSE simultaneously improves speech
intelligibility and quality, and outperforms state-of-the-art solutions
by a large margin.

CCS CONCEPTS
• Computing methodologies → Speech recognition; • Hardware
→ Signal integrity and noise analysis; Noise reduction.
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1 INTRODUCTION
Human auditory system is remarkably capable of singling out a
speech source amid a mixture of interfering speakers and noises,
which remains a key challenge for machine hearing. The problem
has witnessed a surge in today’s digital communication systems for
human-human and human-machine interaction. Examples include
mobile VoIP, voice commands, post-production of live speech, etc.
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Figure 1: UltraSE targets the scenario where the user holds the
smartphone to record the speech in a noisy environment. Ul-
traSE uses ultrasound sensing as a complementary modality to
separate the desired speaker’s voice from interferences.
The related research problem of speech separation and enhancement
(SSE) is often considered as the holy grail of audio processing.

Since the problem is inherently ill-posed, classical solutions need
to rely on prior knowledge (i.e., per-speaker feature engineering) [1]
or directional microphone arrays [2] to isolate the desired source
from ambient sounds. In the past several years, deep learning tech-
niques have proliferated and significantly advanced the field, en-
abling single-microphone speaker-independent SSE [3]. State-of-
the-art solutions have demonstrated around 10 dB improvement in
average audio quality, in separating a mixture of 2 clean speeches [4].
However, the challenging scenario of more than 2 speakers mixed
with background noise received little attention [5]. A very recent
preliminary test [6] revealed that existing deep learning models often
underperform in such cases, because the unstructured background
noise compromises their ability to identify separable structures in
the speech streams. In addition, existing audio-only approaches can-
not solve the label permutation problem, i.e., associating the model
outputs to the desired speaker. Audio-visual algorithms [6] leverage
video recordings of the speakers’ faces to simultaneously solve the
SSE and permutation problems. However, the need for a camera at
specific view angle and under amenable lighting condition limits
their practical usability [7].

In this paper, we propose to utilize ultrasound sensing as a com-
plementary modality to separate the desired speaker voice from
noises and interferences. Our method, called UltraSE, is applicable
to commodity mobile devices (e.g., smartphones) equipped with a
single microphone and loudspeaker. Figure 1 illustrates our basic
idea. During the voice recording, UltraSE continuously emits an
inaudible ultrasound wave, which is modulated by the speaker’s
articulatory gestures (lip movement in particular) close to the smart-
phone. The signals recorded by the microphone thus contain both the
audible sounds and inaudible reflections. As illustrated in Figure 1,
whereas the audible sounds (“Green”) mix the targeted clean speech
(“Black”) and other interferences plus background noise (“Blue”),
the inaudible reflections (“Orange”) only capture the targeted user’s
articulatory gesture motion which is correlated with the clean speech.
UltraSE employs a DNN framework to capture such correlation and
denoise the audible sounds.
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UltraSE faces 3 core design challenges. i) How to characterize the
articulatory gestures by ultrasound despite interference? It is chal-
lenging to capture the fine-grained articulatory gestures since they
are fast (−80 ∼ 80 cm/s) and subtle (< 5 cm displacement). More-
over, mutual interference exists between the speech and ultrasound
due to harmonics and hardware artifacts. To address the challenge,
we fully exploit the advantages of ultrasound, i.e., high sampling
rate and perfect alignment with the clean speech in the time do-
main. We design the transmitted ultrasonic waveform to capture the
short-term high-resolution Doppler spectrogram, and apply a one-
time transmission volume calibration to reduce the cross-modality
interference.

ii) How to design a DNN model to fuse the two modalities and
represent their correlation? Since the physical feature characteristics
of the two modalities are different, we design a two-stream DNN
architecture to process each and a self-attention mechanism to fuse
them. Further, no existing method has addressed the cross-modal
noise reduction problem which is fundamental to UltraSE, i.e., using
one modality (ultrasound) to reconstruct another modality (speech)
which is polluted by noise/interference. We thus propose a condi-
tional GAN (cGAN) based training model, with a novel cross-modal
similarity measurement network, to enable this capability.

(iii) How to improve both intelligibility and quality for the en-
hanced speech? It is known that the amplitude of time-frequency
(T-F) spectrogram is critical for speech intelligibility, whereas the
phase determines the speech quality [8]. We thus expand UltraSE
into a two-stage multi-domain DNN architecture, which prioritizes
the optimization of intelligibility in the T-F domain, and then recon-
structs phase in the T domain to improve speech quality. We place
the multi-modal fusion network inside the T-F domain, based on the
empirical observation that the articulatory gestures are more related
to the speech intelligibility.

To evaluate UltraSE, we develop an Android app to collect a
new speech dataset called UltraSpeech, which contains 22.2 hours
of clean speech and corresponding ultrasound sensing signals from
20 users. We then combine UltraSpeech with the DARPA TIMIT
speech corpus [9] and AudioSet ambient noise dataset [10] to create
a 300 hours noisy speech dataset. Our evaluation results show that
UltraSE can separate the targeted speech in a sophisticated environ-
ment with multiple speakers and ambient noise , improving SNR
by 10.65 to 17.25 dB. UltraSE achieves an SNR gain of 6.04 dB
on average over state-of-the-art single-channel speech enhancement
methods, across various interference/noise settings. Its performance
gain is even comparable to multi-channel (audio-visual) solutions.

UltraSE represents the first audio-only method to bring the SSE
performance close to multi-channel solutions, while overcoming the
label permutation issue. Through the UltraSE design, we make the
following technical contributions:

• We design a multi-modal multi-domain DNN framework for
single-channel speech enhancement which fuses the ultrasound and
speech features, and simultaneously improves speech intelligibility
and quality.

• We design a cGAN-based cross-modal training model which
effectively captures the correlation between ultrasound and speech
for multi-modal denoising.

• We collect a new speech dataset—UltraSpeech, and verify Ul-
traSE’s performance in comparison with state-of-the-art solutions.

2 RELATED WORK
2.1 Audio-only Speech Enhancement
Despite decades of research, speech enhancement remains a chal-
lenging open problem that attracts extensive research today [6, 11–
13]. Classical model-driven solutions [14–16] typically build on
various assumptions, such as stationarity of signals, uncorrelated
clean-speech and noise, independence of speech and noise in the
time-frequency domain, etc. Thus, they often lack robustness in
real-world environment [3]. More recent solutions adopt supervised
learning instead [3], and can be categorized by their domain of
feature processing.

T-F domain methods: Time-Frequency (T-F) domain methods
aim to learn a spectrogram mask, i.e., a weighting matrix that can
be multiplied with the noisy speech spectrogram to recover the de-
sired clean speech [12]. The key problem lies in i) what type of mask
should be used, and ii) how to use DNN to predict such a mask. Early
stage solutions only estimate the amplitudes of a spectrogram by
using real-valued Ideal Binary Mask (IBM) [17], Ideal Ratio Mask
(IRM) [18] or Spectral Magnitude Mask (SMM) [19]. They then
directly apply the original noisy phase on each T-F bin to generate
the enhanced speech. Although these amplitude masking methods
benefit speech intelligibility, they suffer from poor speech perceptual
quality due to the unavoidable phase error. Complex Ideal Ratio
Mask (cIRM) [20] and Phase-Sensitive Mask (PSM) [21] are then
proposed to incorporate phase information. Recently, PHASEN [12]
and Ni et al. [22] found that the estimated cIRM tends to downgrade
to IRM, since the T-F domain phase is close to white noise especially
for low-amplitude T-F bins. Thus, they proposed two-stream [12]
or two-stage [22] networks to take both the IRM and cIRM and
derive a combined training loss. For the model design, most T-F
domain methods deem the T-F spectrogram as an image, and de-
sign DNN/CNN-based models [20, 23] to minimize the MSE/MAE
loss between the estimated mask and ground truth. PHASEN [12]
and Ouyang et al. [24] observed that the fundamental frequencies
and speech harmonics are separated afar, and the correlation can-
not be fully captured by CNN. So they adopt dilated convolution
and frequency-domain attention instead. Unlike the hand-crafted
MSE/MAE loss function, Soni et al. [25] further used GAN to dis-
criminate whether the enhanced results are clean or noisy.

T domain methods: Time (T) domain methods divert around the
error-prone phase prediction problem by processing the waveform
directly. For example, Rethage et al. [26] modified the WaveNet;
TCNN [27] proposed an encoder-decoder architecture with an ad-
ditional temporal convolutional net; SEGAN [28] utilized a GAN-
based network to generate the 1D waveform of clean speech. Yet
the performance of such methods is not among the top tier, since
the speech auditory patterns, such as proximity in time/frequency,
harmonics, and common amplitude/frequency modulation, are more
prominent on a T-F spectrogram [3].

Multi-domain methods: In recent concurrent work TFTNet [13],
a learnable decoder replaces the iSTFT in the T-F domain to realize
a joint T-F and T domain model for speech enhancement. Unlike
TFTNet, our key insight is that the speech intelligibility is much
more important than speech quality for speech enhancement. We
thus design a two-stage multi-domain DNN network to prioritize
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the optimization of speech intelligibility in the T-F domain, and then
reconstruct phase in the T domain to improve the speech quality.

Speech source separation: Although most of the aforementioned
approaches demonstrated acceptable performance for non-speech
noise, they still can not handle the cocktail party scenario involving
multiple interfering speakers. To resolve such speech separation
problems, Deep clustering [29] trained speech embedding for each
source and then uses clustering algorithms to separate them. PIT
[30] iteratively changed the permutation of sources in the training
process to train a permutation invariant speech separation model.
These methods still need to know the number of speakers a priori,
and do not work well for the case with more than 3 speakers plus
noise [31]. Further, the label permutation problem persists—They
can separate multiple sources of speech, but cannot automatically
identify which is from the targeted speaker, which may hinder cer-
tain machine-operated back-end tasks (e.g., voice assistant on a
smartphone). UltraSE overcomes all these deficiencies.

2.2 Multi-modal Speech Enhancement
To tackle the permutation issue, audio-visual (AV) methods use a
video recording of the subject’s face as a hint for the audio [32,
33]. Specifically, Ephart et al. [6] trained a speaker-independent
speech separation model based on a large set of YouTube videos [6].
Afourasl et al. [7] found that even partially occluded videos of lip
motion can assist speech separation. Nonetheless, AV approaches
bear many drawbacks. Besides microphone, they need an additional
camera pointing to the subject’s face under good lighting conditions,
which is inconvenient and even infeasible in many typical use cases.
Moreover, camera is unusable in many privacy-sensitive locations.

The idea of using ultrasound as a complementary modality to
enhance speech has been explored by previous works [34, 35]. How-
ever, these works [34, 35] all require special ultrasonic hardware.
In comparison, UltraSE only needs the single audio channel on the
smartphone and overcomes practical challenges such as mutual inter-
ference between modalities. Besides, they use traditional methods,
i.e., non-negative matrix factorisation [35] and nonlinear regression
[34], and only show the performance of speech enhancement on am-
bient noise rather than speech interference. UltraSE further pushes
the limits of this idea by designing a multi-modal multi-domain DNN
framework to achieve similar performance for speech separation and
enhancement with the audio-visual methods.

2.3 Device-free Ultrasonic Sensing
Device-free ultrasonic sensing techniques can leverage the loud-
speakers and microphones on commodity mobile devices to track the
distance/direction changes of nearby objects [36]. State-of-the-art
ultrasonic gesture tracking schemes [36–40] can achieve mm-level
accuracy. Besides location and hand gesture tracking, recent studies
also attempted to use ultrasonic sensing for lip reading [41]. How-
ever, due to insufficient spatial resolution, they only fit coarse sensing
applications, e.g., liveness detection [42, 43]. SilentTalk [41] uses
a model-based method to classify the Doppler shift features caused
by 12 basic mouth motions and recognize specific short sentences.
SilentKey [44], EchoPrint [45], LipPass [46], and VocalLock [47]
use the ultrasounic sensing features introduced by mouth motion for
biometric authentication. In contrast, UltraSE is the first to demon-
strate that ultrasonic sensing can serve as a complementary modality
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(a) Speech harmonics create interference within the ultrasound band.
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(b) Doppler shift spectrogram of a single-tone 18 kHz transmitted signal and the correspond-
ing T-F spectrogram of speech w/o interference.

Figure 2: T-F domain features of an example speech segment:
“Don’t ask me to carry an oily rage like that.”

to solve the cocktail party problem and bring speech enhancement
to the next level.

3 SENSING THE ARTICULATORY
GESTURES

In this section, we first provide a primer on the relationship between
speech and articulatory gestures. Then we introduce UltraSE’s ultra-
sound sensing signal design, along with mechanisms to mitigate the
mutual interference between speech and ultrasound.

Human speech generation involves multiple articulators, e.g., tongue,
lips, jaw, vocal cords, and other speech organs [42]. Coordinated
movement of such articulators, including lip protrusion and closure,
tongue stretch and constriction, jaw angle change, etc., is used to
define the phonological units, i.e. phoneme in phonology and lin-
guistics [48]. Thus, assuming that we can fully capture and interpret
the articulatory gestures, it would be possible to recover the speech
signals. However, it is challenging to capture the fine-grained ges-
ture motion of all articulators by using a single microphone [41].
First, the articulators are close to each other. Some are inside the
mouth/throat. So it is hard to discriminate their motion. Second, the
articulatory gestures are always fast and subtle. Each typically lasts
100 ∼ 700 ms and involves < 5 cm moving distance for lip and jaw
[49]. Thus, state-of-the-art sensing methods can only recognize a
limited number of words or phrases by using COTS microphones
[41], and the accuracy in the wild is typically quite low [50]. In
UltraSE, we do not expect that the captured articulatory gesture
features can directly synthesize the speech signals. We propose to
take these features as coarse complementary information to facilitate
the SSE.

3.1 Transmitted Ultrasound Signals Design
Modality advantages: Compared to other approaches such as cam-
era, ultrasound possesses two advantages in sensing articulatory
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gestures. First, the ultrasound sensing signals are captured by us-
ing the same sensor (i.e. microphone) as the speech signals. This
introduces an automatic “feature alignment” in the time domain,
which means the captured ultrasound sensing features are well syn-
chronized and matched with the clean speech signals. Second, the
sampling rate of the ultrasound sensing (typically 48 kHz or 96 kHz)
is much higher than vision-based methods (typically 24 ∼ 120 fps),
which enables finer time resolution when capturing the articulatory
gestures.

Design goals: Compared to previous works on ultrasound based
gesture sensing especially hand gestures [36, 37, 39, 51], UltraSE
needs to satisfy the following additional design goals to fully ex-
ploit the modality advantages: (i) The extracted features require high
sampling rate to achieve high T-F resolution. The velocity of users’
articulatory gestures ranges from −80 ∼ 80 cm/s (−160 ∼ 160 cm/s
for propagation path change) [49], which will introduce −100 ∼
100 Hz Doppler shift when the transmitted signal’s frequency is
20 kHz. Meanwhile, each articulatory gesture corresponds to a sin-
gle phoneme lasting 100 ∼ 700 ms [42], which is approximately 5
times shorter than hand gestures [52]. Therefore, to characterize the
articulatory gestures, the ideal way is to characterize the short-term
high-resolution Doppler shift. (ii) The extracted features need to
be robust to different kinds of noises introduced by multipath and
frequency-selective fading. UltraSE thus needs to remove the reflec-
tions from static objects, mitigate the multipath from moving objects
(e.g., body parts), and extract the signal features from articulatory
gestures alone.

Ultrasonic sensing signal design: To satisfy these requirements,
we choose multiple single-tone continuous waves (CWs) with lin-
early spaced frequencies as our transmitted signals. Although mod-
ulated CW signals, such as FMCW [53], OFDM [51] and Pseudo-
Noise (PN) sequences [37, 39], can measure the impulse response to
resolve multipath, they all suffer from the aforementioned low sam-
pling rate problem. The fundamental reason is that the modulation
processes signal in segments (i.e., chirp period or symbol period).
Thus, each feature point of the modulated CW signal characterizes
the motion within a whole segment, which is typically longer than 10
ms (960 samples) at a sampling rate of 96 kHz. Thus, only 10 ∼ 70
feature points can be output for each articulatory gesture with typical
duration of 100 ∼ 700 ms [42], which can hardly represent the fine-
grained instantaneous velocity of gesture motion. In comparison,
each sampling point of the single-tone CW can generate one fea-
ture point (Doppler shift estimation) to represent the micro motion
with duration of 0.01 ms ( 1

96000 ) at a sampling rate of 96 kHz. To
further resolve the multipath effect and frequency selective fading,
we combine multiple single-tone CWs with equal frequency spac-
ing, resulting in a transmitted waveform 𝑇 (𝑡) = ∑𝑁

𝑖=1𝐴𝑖 cos 2𝜋 𝑓𝑖𝑡 ,
where 𝑁 , 𝐴𝑖 and 𝑓𝑖 denote the number of tones, the amplitude and
frequency of the 𝑖𝑡ℎ tone, respectively.

To alleviate the spectral leakage across different tones when gen-
erating the spectrogram in later stage, we ensure that the STFT
window size (1024 points) is a full cycle of all the transmitted tones
at the maximum sampling rate (48 or 96 kHz allowable by COTS
microphones). We empirically set the first frequency 𝑓0 = 17.25 kHz,
the frequency interval Δ𝑓 = 750 Hz, and the number of tones 𝑁 = 8.

We decrease the amplitude 𝐴𝑖 of the sub-20kHz frequencies to make
sure that the transmitted signals will not disturb users.

3.2 Mitigating Sensing Interference
Despite the orthogonality in frequency, mutual interference exists
between speech and ultrasound in the following two cases, which
causes ambiguity of Doppler features.

First, the speech harmonics may interfere the Doppler features
due to non-linearity of microphone hardware. The speech and ul-
trasound signals generated in UltraSE are combined in the air, re-
sulting in 𝑆𝑖𝑛 (𝑡) = 𝑣 (𝑡) + ∑𝑁

𝑖=1𝐴𝑖 cos 2𝜋 𝑓𝑖𝑡 , where 𝑣 (𝑡) represents
the speech signals, and

∑𝑁
𝑖=1𝐴𝑖 cos 2𝜋 𝑓𝑖𝑡 is the high-frequency ultra-

sound sensing signals. Due to the microphone non-linearity [54–56],
the captured signals can be modeled as 𝑆𝑜𝑢𝑡 ≃ 𝐴1𝑆𝑖𝑛 +𝐴2𝑆2

𝑖𝑛
[54],

which contains speech harmonics on the inaudible ultrasonic band,
i.e., 𝑆𝑛𝑜𝑖𝑠𝑒 =

∑𝑁
𝑖=1𝐴

2
𝑖
𝑣 (𝑡) cos 2𝜋 𝑓𝑖𝑡 . As shown in Figure 2(a), these

speech harmonics often leak into the ultrasonic band, and will cor-
rupt the articulatory gestures’ Doppler features. Fortunately, when
we decrease the amplitude of the ultrasound 𝐴𝑖 , the second order
term (harmonics’ amplitude 𝐴2) decreases faster than the first order
term (Doppler shift amplitude 𝐴1). Our empirical experiments reveal
that, when the total amplitude of transmitted ultrasound is set to
< 80 dBz (flat weighting) sound pressure level (measured at 5 cm
away from the speaker), the interference effect becomes negligible.
We thus always use this setting as the default ultrasound amplitude
in UltraSE. It is worth noting that previous ultrasound based hand
gesture sensing schemes [36, 37, 39] did not address this interfer-
ence issue because they are typically tested without strong close-by
speech interference.

Second, when a user speaks close to the microphone, some phonemes,
e.g., /p/ and /t/, may blow air flow into the microphone which gener-
ates high-volume noise. As an example, Figure 2(a) shows the T-F
spectrogram introduced by the phoneme /t/. Amid the high-volume
air flow, the microphone has to prevent saturation by calling on
its auto gain control (AGC), which scales down all incoming sig-
nals and consequently renders the Doppler features negligible. In
UltraSE, instead of removing the corrupted samples, we harness
them as part of the ultrasonic sensing features, which helps char-
acterize the sampling period corresponding to specific phonemes
(e.g., the /t/).

4 AN OVERVIEW OF ULTRASE DNN MODEL
For ease of exposition, we will first introduce the basic DNN ar-
chitecture of UltraSE, and then discuss the challenges and design
principles of each design component in the following sections. Our
first step is to create the DNN input features from the raw signals
(Section 5). Then, we design a two-stage, multi-modal, multi-domain
DNN model, which comprises three key modules, as briefed below.

T-F domain multi-modal amplitude network (Section 6). This
network module generates the amplitude Ideal Ratio Mask (aIRM),
i.e., the ratio between the magnitudes of the clean and noisy spectro-
grams, by using both speech and ultrasound as the input. It consists
of two subnetworks.

Subnet (i) Two-stream feature embedding: Our model starts by
using the noisy speech’s T-F spectrogram and the concurrent ultra-
sound Doppler spectrogram as input (Section 5). We then design a
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Figure 3: Overview of UltraSE’s multi-modal multi-domain DNN design. Convolution layer notation: Channels@Kernel size

two-stream feature embedding architecture, to transform the differ-
ent modalities into the same feature space, while maintaining their
time-domain alignment.

Subnet (ii) Speech and ultrasound fusion network: Then, we con-
catenate the features of each stream in the frequency dimension. A
self-attention mechanism is further applied to fuse the concatenated
feature maps to let the multi-modal information “crosstalk” with
each other. The fused features are subsequently fed into a BiLSTM
layer followed by three FC layers. The resulting output is an am-
plitude mask which is multiplied with the original noisy amplitude
spectrogram to generate the amplitude-enhanced T-F spectrogram.

cGAN-based cross-modal training (Section 7). As shown in
Figure 4, we design a cGAN-based training method to further de-
noise the amplitude-enhanced T-F spectrogram. In our cGAN model,
the generator is the above T-F domain multi-modal amplitude net-
work; the discriminator is designed to discriminate whether the
enhanced spectrogram corresponds to the ultrasound sensing fea-
tures.

T domain phase network (Section 8). We use the iSTFT (a fixed
1D convolution layer) [57] to transform the amplitude-enhanced T-F
spectrogram into T domain waveform. To fine-tune the phase of
the enhanced signals, we design an encoder-decoder architecture to
reconstruct the phase to be close to the clean speech in the T domain.

5 DNN INPUT FEATURE DESIGN
In this section, we discuss the preprocessing steps to generate the
DNN input features for the two signal modalities. Figure 5 illustrates
the workflow.

Speech feature extraction: Typical speech sound ranges from
approximately 300 Hz to 3.4 kHz [58], and the signals above 8 kHz
barely affect the speech intelligibility and human perception [59].
Thus, we first use a low-pass elliptic filter to extract the signals below
8 kHz. Then we resample the signals to 16 kHz by using a Fourier
method. The final enhanced speech is also sampled at 16 kHz which
suffices to characterize the speech signals. Higher sampling rate may
unnecessarily increase the optimization space and model complexity.

The speech feature input for the DNN model is the T-F domain
speech spectrogam, generated by applying STFT on the time domain
waveform. The STFT uses a Hann window of length 32 ms, hop
length of 10 ms, and FFT size of 512 points under 16 kHz sampling
rate, resulting in 100 × 257 × 1 complex-valued scalars per second.

Ultrasound sensing features: We first use a high-pass elliptic
filter to isolate the signals above 16 kHz. Then, we create the ul-
trasound sensing features within the T-F domain, by extracting the
Doppler spectrogram induced by articulatory gestures and aligning
it with the speech spectrogram. The key consideration for this step
is to balance the trade-off between time resolution and frequency
resolution of the STFT under the limited sampling rate (96 kHz
maximum). First, to guarantee time alignment between the speech
and ultrasound features, their hop length in the time domain should
be the same. The STFT uses a hop length of 10 ms to guarantee
100 frames per second, resulting in 10 ∼ 70 frames per articulatory
gesture which is enough to characterize the process of an articulatory
gesture (Section 3). Second, the frequency resolution, determined by
the window length, should be as fine-grained as possible to capture
the micro Doppler effects introduced by the articulatory gestures,
under the premise that the time resolution is sufficient. A window
length 85 ms is the longest length for STFT to make it shorter than
the shortest duration of an articulatory gesture (100 ms) [42]. Over-
all, under the 96 kHz sampling rate, the STFT is computed using a
window length 85 ms, hop length of 10 ms, and FFT size of 8192
points, resulting in 11.7 Hz ( 960008192 ) frequency resolution.

In addition, to mitigate the reflections from relatively static ob-
jects, we remove the 3 central frequency bins and leave 8 × 2 = 16
frequency bins corresponding to Doppler shift [−11.7 × 8,−11.7)
and (11.7, 11.7 × 8] Hz. Finally, we run a min-max normalization
on the ultrasound Doppler spectrogram. The resulting T-F domain
ultrasound features is 100 × 16 × 8 scalars per second, where 8 is the
number of ultrasonic tones. The reason why we fuse the ultrasound
sensing features in T-F domain instead of T-domain will be evident
in the latter multi-domain design (Section 8).

The origin of the ultrasound feature and its correlation with
the speech feature: Figure 2(b) uses one example speech segment to
visualize the alignment between the ultrasound Doppler spectrogram
and the clean speech spectrogram. The ultrasound sensing features
mainly consist of the −100 ∼ 100 Hz Doppler shift introduced by
relatively large motion from the lip, tongue and jaw. It can not
capture the high-frequency micro-vibration motions introduced by
the vocal folds [60], since the vocal vibration displacements (about
20 𝜇m [61]) are much shorter than the ultrasound wavelength (about
2 cm).

Some obvious characteristics in this example corroborate the cor-
relation between the ultrasound sensing features and corresponding
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clean speech features. For example, each word in the speech signals
is well aligned with a burst of Doppler shifts from the articulatory
gestures. Meanwhile, negative Doppler shift is introduced by mouth
open gestures slightly before the onset of each word. Our DNN
model is designed to learn such cross-modality correlation for the
purpose of SSE.

6 MULTI-MODAL FUSION DESIGN
The multi-modal fusion network aims to first appropriately learn
the F domain features of the two modalities respectively, and then
fuse them together to exploit the T-F domain correlation. The F do-
main of the ultrasound signal features represents the motion velocity
(Doppler shift) of the articulatory gestures, while that of the speech
sound represents the frequency characteristics such as harmonics
and consonants. Meanwhile, the size of the two modalities’ fea-
ture maps are different (Section 5). So one cannot straightforwardly
concatenate these two feature maps into a scalar. We thus design a
two-stream embedding architecture to transform them into the same
feature space.

6.1 Two-stream Feature Embedding
Speech feature embedding: The input of the speech feature embed-
ding subnetwork is the T-F domain amplitude spectrogram, denoted
as 𝑆𝑎

𝑛𝑜𝑖𝑠𝑒
∈ R1×𝑇×𝐹𝑎 . 𝐹𝑎 = 257 is determined by the STFT win-

dow size. The “blue” part in Figure 3 shows the architecture of this
subnetwork, which comprises traditional 2D convolution layers and
3 “TFS-Conv” blocks. The “TFS-AttConv” block, borrowed from
PHASEN [12], employs both the ResNet [62] and self-attention
mechanism [63] to learn the global correlation of sound patterns
across T-F bins. In contrast, the small kernels of CNN cannot capture
such long-range correlations. Figure 6 shows the structure of a single
“TFS-AttConv” block. It contains 2 “CF-Att” blocks at the begin-
ning and the end to learn the global correlation. In each “CF-Att”,
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Figure 6: Two-stream feature embedding. Convolution layer no-
tation: Channels@Kernel size

a self-attention mechanism is used to fuse the channel-wise infor-
mation following a SENet-based design [63]. Then, the “Freq-FC”
layer applies a learnable frequency transformation matrix to enable
frequency-domain self-attention at each point in the T domain. We
omit other details of this block which has been covered in PHASEN
[12].

Ultrasound feature embedding: The input of the ultrasound
feature embedding is𝑈 𝑠 ∈ R𝑇×𝐹𝑠×𝐶𝑠

, where𝐶𝑠 = 8 is the number of
ultrasound tones, and 𝐹𝑠 = 16 is the maximum number Doppler shift
frequency bins introduced by the articulartory gestures (Section 5).
Since the motion speed always changes continuously, the F domain
ultrasound features are mainly local Doppler shift features. Small
kernels suffice to capture such feature correlation because the size of
the F domain is only 16. Therefore, instead of the “TFS-AttConv”,
we design a “TFU-Conv” block which removes the attention layers
and reduces the kernel size of the F domain in all the 2D convolution
layers. To maintain the time alignment of the two modalities after
feature embedding, we keep the T domain kernel size the same as in
the “TFS-AttConv” block. For convenience of concatenating the two
modalities’ features, we choose the same output channel number for
all the 2D convolution layers.

Finally, after 3 “TFU-Conv” and “TFS-AttConv” blocks respec-
tively, the channel number of the two streams reduces to 𝐶𝑠

𝑟 = 8 and
𝐶𝑎
𝑟 = 8 by applying a 1 × 1 2D convolution.

6.2 Speech and Ultrasound Fusion Network
After the feature embedding, we concatenate the feature maps of the
two streams: 𝑆 𝑓

𝑖𝑛
= 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑀𝑎

𝑜 ,𝑈
𝑠
𝑜 ), where 𝑆

𝑓

𝑖𝑛
∈ R𝐶𝑟×𝑇×𝐹𝑎𝑠 and

𝐹𝑎𝑠 = 𝐹𝑎 + 𝐹𝑠 . This concatenated feature map is then fed into the
“Self-Att Fusion” to learn the relationship between the two modalities.
The “Self-Att Fusion” block is similar to the “CF-Att” block, but the
size of the feature maps differs. First, since the meaning of channel in
ultrasound sensing and speech is different, we first use a channel self-
attention to learn the correlation across different channels. Second,
to enable these two modalities’ features to “crosstalk” with each
other in the F domain, the self-attention for the F domain is realized
by using a learnable transformation matrix on the fused features.
Third, the feature after self-attention fusion is concatenated with the
original feature and fused by a 1 × 1 2D convolution.

Finally, the whole feature map is fed into a BiLSTM and 3 fully
connected (FC) layers to predict the aIRM ∈ R𝑇×𝐹𝑚×1 of the noisy
speech. The predicted aIRM is then multiplied with the original noisy



UltraSE: Single-Channel Speech Enhancement Using Ultrasound ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 BLSTM10 FC11 FC12 FC13
Num Filters 48 48 48 48 48 48 48 48 8 Hidden Size 300
Filter Size 1 × 7 7 × 1 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1 Output Size 600 600 5

Table 1: Layers comprising ultrasound subnetwork

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7 Conv8 Conv9 Conv10 Conv11 Conv 12 Conv 13
Num Filters 48 48 48 48 48 48 48 48 48 48 48 48 8
Filter Size 1 × 7 7 × 1 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5 1 × 1
Dilation 1 × 1 1 × 1 1 × 1 1 × 2 1 × 4 1 × 8 1 × 16 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 1 × 1

Table 2: Layers comprising speech subnetwork (BLSTM and FC layers parameters are the same as the ultrasound subnetwork.)
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Figure 7: Architecture of the T-F domain cross-modal similarity
measurement network (i.e., the Discriminator).

speech’s amplitude spectrogram to generate the amplitude-enhanced
T-F spectrogram.

Note that all the convolutional layers in the multi-modal fusion
network use zero padding, dilation= 1 and stride= 1 to make sure the
output feature map size is the same as the input speech/ultrasound
spectrogram. Also, each 2D convolutional layer is followed by batch
normalization (BN) and ReLu activation.

7 CGAN-BASED CROSS-MODAL TRAINING
The fundamental problem for UltraSE is multi-modal noise reduc-
tion, i.e., using one modality (ultrasound) to recover another modal-
ity (speech) which is polluted by noise/interference. The former
modality has low sensing resolution but is interference-free and cor-
related with the latter. Although we intentionally maintain the time
alignment between the two (Section 6), it is hard to force the multi-
modal fusion network to “understand” such multi-modal correlation,
because a traditional loss function (e.g., MSE) can only train the
network to clean up the T-F spectrum end-to-end. We thus propose
a cGAN-based training method, which implicitly incorporates the
maximization of cross-modal correlation itself as a training goal.

7.1 Cross-modal Similarity Measurement
A key element in any GAN design is to define the similarity met-
ric used by the discriminator. Unlike traditional GAN applications
(e.g., image generation) which compare between the same type of
features, our cross-modal cGAN needs to discriminate whether the
enhanced T-F speech spectrogram matches the ultrasound Doppler
spectrogram (i.e., whether they are a “real” or “fake” pair). We pro-
pose a cross-modal Siemese neural network to meet this challenge.

A Siamese neural network uses shared weights and model ar-
chitecture while working in tandem on two different input vectors

to compute comparable output vectors. It is traditionally used to
measure the similarity between two inputs from the same modal-
ity, e.g., two images [64]. To enable a cross-modal Siamese neural
network, we create two separate subnetworks (Figure 7), aiming to
characterize the correspondence between the T-F domain features of
the speech and ultrasound, respectively. The basic architecture for
these 2 inputs is a CNN-LSTM model. Since human speech contains
harmonics and spatial relationship in the F domain, the speech CNN
subnetwork uses dilated convolutions for frequency domain context
aggregation. The Doppler shifts from ultrasound sensing mostly
encompasses local features. Thus, the ultrasound CNN subnetwork
only contains traditional convolution layers. Following the convolu-
tion, a Bi-LSTM layer is used to learn the long-term time-domain
information for both modalities. Finally, three fully connected (FC)
layers are introduced to learn two comparable output vectors respec-
tively. We emphasize that the architecture and parameters are not
shared in this cross-modal design, which differs from the traditional
Sieamese networks.

As shown in Figure 7, we use the Triplet loss [65] to train the
cross-modal Siamese network. The triplet loss function accepts 3
inputs, i.e., an anchor input 𝑈 𝑠 is compared to a positive input 𝑆𝑎𝑔𝑟
and a negative input 𝑆𝑎𝑜𝑢𝑡 . It aims to minimize the distance between
“real” pair 𝑈 𝑠 and 𝑆𝑎𝑔𝑟 , and maximize the distance between “fake”
pair 𝑈 𝑠 and 𝑆𝑎𝑜𝑢𝑡 . In our model, the anchor input 𝑈 𝑠 is the ultra-
sound sensing features, the positive input 𝑆𝑎𝑔𝑟 is the corresponding
clean speech amplitude spectrogram, and the negative input 𝑆𝑎𝑜𝑢𝑡 is
the noisy speech amplitude spectrogram. Thus, our network model
minimizes the following Triplet loss:

L𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝐷) = E𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆
𝑎
𝑜𝑢𝑡∼𝑝𝑑𝑎𝑡𝑎 (𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆

𝑎
𝑜𝑢𝑡 )

[ ( ∥𝑓𝑢 (𝑈 𝑠 ) − 𝑓𝑠 (𝑆𝑎𝑔𝑟 ) ∥2 − ∥𝑓𝑢 (𝑈 𝑠 ) − 𝑓𝑠 (𝑆𝑎𝑜𝑢𝑡 ) ∥2 + 𝛼, 0) ]
(1)

where 𝑓𝑢 is the ultrasound subnetwork, 𝑓𝑠 is the speech subnetwork,
and 𝛼 is a margin distance between “real” and “fake” pairs.

We use a speech and ultrasound dataset collected on COTS smart-
phones (Section 9.1) to train the cross-modal Siamese network, and
verify its effectiveness in a benchmark experiment. The training and
testing sets contain 3 h and 0.5 h speech corpus for 15 and 5 users,
respectively. The T-F domain speech feature input is a 1 × 498 × 257
scalar (5 s segment), and the T-F domain ultrasound feature input is
a 8 × 498 × 16 scalar.

Figure 8 shows the probability density function (PDF) of outputs,
where a smaller value indicates higher similarity. It is obvious that
the output PDFs for the real pairs and fake pairs are perfectly sep-
arated, which means that our similarity measurement network can
effectively discriminate whether a pair of speech and ultrasound
inputs are generated by the same articulatory gestures.



ACM MobiCom ’21, October 25–29, 2021, New Orleans, LA, USA Ke Sun, Xinyu Zhang

Enc1 Enc2 Enc3 Enc4 Enc5 Enc6 Enc7 Dec7 Dec6 Dec5 Dec4 Dec3 Dec2 Dec1
Num Filters 16 32 32 64 64 128 128 128 64 64 32 32 16 1

Table 3: Layers comprising T domain phase network. Kernel size = 32, Stride = 2, Padding = 15.
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Figure 8: PDF of outputs from the cross-modal similarity mea-
surement network.

7.2 cGAN-based Model Training
Now we discuss how to leverage such similarity measurement as a
discriminator in a cGAN to further fuse the multi-modal informa-
tion. Our cGAN model aims to not only minimize the MSE of the
speech amplitude spectrogram (relative to the ground-truth), but also
guarantee high similarity between the “fake” pair (i.e., the enhanced
speech and ultrasound sensing features) and the “real” pair (i.e., the
clean speech and ultrasound sensing features).

cGAN has been widely used to add a conditional goal to guide a
generator to automatically learn a loss function which well approx-
imates the goal [66]. Figure 4 shows the structure of the UltraSE
cGAN model. The generator “𝐺 (𝑆𝑎

𝑛𝑜𝑖𝑠𝑒
,𝑈 𝑠 )” is the aforementioned

multi-modal network (Section 6), which takes the noisy speech am-
plitude spectorgram 𝑆𝑎

𝑛𝑜𝑖𝑠𝑒
and ultrasound sensing spectrogram 𝑈 𝑠

as the input. 𝐺 (·) is trained to output amplitude-enhanced T-F spec-
trogram of the speech 𝑆𝑎𝑜𝑢𝑡 , which not only minimizes the traditional
amplitude MSE loss [12], but also tries to “fool” an adversarially
trained discriminator “𝐷 (𝑆𝑎𝑜𝑢𝑡 , 𝑆𝑎𝑔𝑟 ,𝑈 𝑠 )”, which strives to discrimi-
nate the fake pair (𝑆𝑎𝑜𝑢𝑡 ,𝑈 𝑠 ) from the “real” pair (𝑆𝑎𝑔𝑟 ,𝑈 𝑠 ) under the
aforementioned triplet loss function. More specifically, The “D” loss
is L𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝐷) (see Eq. (1)), and the “G” loss is

L(𝐺) = E𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆
𝑎
𝑛𝑜𝑖𝑠𝑒

∼𝑝𝑑𝑎𝑡𝑎 (𝑈 𝑠 ,𝑆𝑎𝑔𝑟 ,𝑆
𝑎
𝑛𝑜𝑖𝑠𝑒

),𝑧∼𝑝𝑧

[L𝑇𝑟𝑖𝑝𝑙𝑒𝑡 (𝐷 (𝐺 (𝑈 𝑠 , 𝑆𝑎𝑛𝑜𝑖𝑠𝑒 ), 𝑆𝑎𝑔𝑟 ),𝑈 𝑠 ) ] + 𝜆 ∥𝐺 (𝑈 𝑠 , 𝑆𝑎𝑛𝑜𝑖𝑠𝑒 ) − 𝑆𝑎𝑔𝑟 ∥2

where 𝜆∥𝐺 (𝑈 𝑠 , 𝑆𝑎
𝑛𝑜𝑖𝑠𝑒

) − 𝑆𝑎𝑔𝑟 ∥2 is the traditional MSE amplitude
loss. The reason why we use the amplitude MSE loss here rather
than complex-valued loss or combined loss [12] will be clarified in
Section 8.

Our cGAN design represents a general model for cross-modal
noise reduction, which may be reused in other sensor fusion prob-
lems involving heterogenous sensing modalities.

8 MULTI-DOMAIN SPEECH ENHANCEMENT
In this section, we first investigate the pros and cons of T-F domain
vs. T domain speech enhancement by using statistical analysis and
experimental validation. Our key insight is that improving intelligi-
bility is more critical than enhancing quality, since the top priority
for speech enhancement lies in helping users/machines to understand
the speech in noisy environment. This motivates us to expand the
aforementioned T-F domain network into a two-stage multi-domain
model, which first pushes the limits of intelligibility and then refines
the speech quality.
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Figure 9: Benchmark of the T-F domain methods

8.1 Understanding the Pros and Cons of T-F
Domains Speech Enhancement

Speech sounds and interferences usually exhibit rich auditory pat-
terns in the T-F spectrogram. In this section, we intend to understand
the impact of phase in the T-F spectrogram to enlighten our multi-
domain model design.

How does the T-F spectrogram phase affect the speech intelli-
gibility and quality? We first conduct an experiment by using the
UltraSpeech dataset (detailed in Section 9), where we keep the clean
speech’s amplitude in the T-F spectrogram while replacing its phase
with the noisy speech phase, just as in aIRM (Sec. 2). We use two
metrics to evaluate the impact. (i) Scale-invariant Signal-To-Noise
Ratio (SiSNR) characterizes the speech quality [67]:

L𝑆𝑖𝑆𝑁𝑅 = 10 log10

( | | ⟨ŝ,s⟩s| |s | |2 | |
2

| | ⟨ŝ,s⟩s| |s | |2 − 𝑠 | |2

)
(2)

where s and ŝ are the T domain clean speech and enhanced speech
signals, respectively. (ii) Word Error Rate (WER), representing
speech intelligibility, is the probability that a word cannot be cor-
rectly recognized by an automatic speech recognition (ASR) algo-
rithm [68] and human perception.

As shown in Figure 14(b), when applying the noisy T-F spectro-
gram phase directly, the SiSNR degrades slightly. On the other hand,
phase does not affect the WER in a noticeable way. The noisy phase
with a very low SNR of −9 dB only decreases the WER by 0.7%
when using AWS Transcribe [68]. Meanwhile, human subjects can
clearly understand the speech and only feel a little jittering effect. In
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summary, the phase in the T-F spectrogram barely affects the speech
intelligibility and only slightly degrades the speech quality.

What is the appropriate training loss function for recovering
the speech intelligibility? Figure 9(c) plots the CDF of phase dif-
ference between the clean and noisy speech spectrogram across the
T-F bins. We see that the phase difference is almost uniformly dis-
tributed for low-SNR speech. This means the phase values in all the
T-F bins are distorted in the spectrogram which makes the phase
recovery challenging. Since phase is not critical to intelligibility, we
proceed to study the performance of different DNN loss functions in
recovering the T-F spectrogram amplitude.

We examine 3 different loss functions. The first is the amplitude
MSE loss which only considers the T-F spectrogram amplitude:
L𝑎 = 𝜆∥𝐺 (𝑈 𝑠 , 𝑆𝑎

𝑛𝑜𝑖𝑠𝑒
) − 𝑆𝑎𝑔𝑟 ∥2. The second is the complex-valued

MSE loss which accounts for both the T-F spectrogram amplitude
and phase: L𝑝 = ∥𝑆𝑐𝑜𝑢𝑡 − 𝑆𝑐𝑔𝑡 ∥2 The third is a combined loss used in
PHASEN: L𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 0.5×L𝑎+0.5×L𝑝 , where 𝑆𝑎𝑜𝑢𝑡 , 𝑆𝑎𝑔𝑡 and 𝑆𝑐𝑜𝑢𝑡 ,
𝑆𝑐𝑔𝑡 are the power-law compressed (𝐴0.3) amplitude spectrogram
and complex-valued spectrogram. We apply these 3 training loss
functions to the architecture in Section 6 and 7. Figure 9(d) shows
the validation amplitude MSE loss. Obviously, upon convergence,
training with amplitude MSE loss leads to lower validation error in
amplitude MSE, and hence better speech intelligibility, than the two
alternative loss functions.

8.2 Two-stage Multi-domain Network Design
Based on the above studies, we derive 3 design principles for our
multi-domain architecture: (i) The T-F spectrogram amplitude con-
tributes to the speech intelligibility whereas the phase is related to
the speech quality. (ii) The T-F spectrogram phase is hard to pre-
dict by using DNN models. (iii) Training DNN models with aIRM
MSE loss in the T-F domain optimizes speech intelligibility. We now
elaborate on the detailed design, which follows the flow in Figure 3.

Stage 1: T-F domain multi-modal amplitude speech enhance-
ment. The DNN architecture and training model of this stage has
been covered in Sec. 6 and Sec. 7. The amplitude-enhanced T-F
spectrogram output is multiplied with the original noisy phase to
generate a complex-valued T-F spectrogram. Then, the iSTFT [57]
is used to transform the T-F spectrogram to the T domain waveform
and output the amplitude-enhanced T-domain waveform.

Stage 2: T domain speech phase enhancement. The goal of
this stage is to fine tune the T-domain waveform to further improve
the speech quality, using the SiSNR (Eq. (2)) as the training loss
function. Inspired by SEGAN [28], our T domain network is an

encoder-decoder network as shown in Figure 10. The encoder con-
tains 7 1D convolution layers to transform 5 s of time domain wave-
form to a 128× 675 scalar. The decoding stage reverses the encoding
operation by means of fractional-strided transposed convolutions.
We connect each encoding layer to its homologous decoding layer
to fully capture the low-level details of the original features. The
network parameters are listed in Table 3. All the 1D convolutional
layers are followed by parametric rectified linear units (PReLUs)
[69]. We also tried a cGAN training model similar to Section 7 in
this stage, but observed negligible performance gain. Thus, we only
enforce the cGAN training in the T-F domain.

Notably, the first and second stage output can be used to satisfy
different applications, e.g., for ASR and human listener, since they
are trained for speech intelligibility and quality, respectively.

9 ULTRASE IMPLEMENTATION
9.1 UltraSpeech Dataset
Traditional speech datasets only contain raw speech without ultra-
sound sensing signals [9, 70]. To evaluate UltraSE, we thus create a
new dataset called UltraSpeech which comprises both.

Data collecting: We recruited 20 fluent English speakers (4 fe-
male, 16 male, average age 25) to collect the UltraSpeech dataset.
Each participant was asked to say at least 300 sentences in the TIMIT
speech corpus [9] by using 2 typical phone holding styles (“Phone
Call” mode and “Towards Mic” mode, shown in Figure 12(b)) in
quiet environment. Meanwhile, we use a custom-built Android app
called UltraRecord, to emit the ultrasonic signals and capture the
audio segments at 96 kHz sampling rate, through the bottom speaker
and microphone on a smartphone. Note that we do not constrain the
user to hold the smartphone at a specific distance from the mouth.
In total, we collected 8k 5-second clean speech segments for each
holding style.

We follow existing SSE work [6, 12] to generate the noisy speech
dataset through synthetic mixture. The interfering speech comes
from the TIMIT data set [9], which contains 6300 different English
sentences, generated by 630 speakers lasting 3.5 hours in total. The
ambient noise dataset comes from AudioSet [10] which contains
more than 1.7 million 10-second segments of 526 types of noise from
real-life, including a wide range of human and animal sounds, musi-
cal instruments and genres, and common everyday environmental
sounds.

Training/testing dataset generation: Each segment of train-
ing/testing data is synthesized by a linear combination of 3 pieces:
⟨𝑆 𝑗 ,𝑈 𝑗 , 𝑆𝑖𝑛𝑜𝑖𝑠𝑒 ⟩, where 𝑆 𝑗 and 𝑈 𝑗 are the clean speech segment and
corresponding ultrasound features from UltraSpeech; 𝑆𝑖𝑛𝑜𝑖𝑠𝑒 is the
𝑖𝑡ℎ noisy sound segment.

Besides, we generate a training set where the interfering speech
and clean speech come from the same speaker. This is widely recog-
nized as the most challenging case of SSE [71], since the interference
bears the same auditory patterns that are indistinguishable from the
desired speech. We add this into the training dataset to force the
model to exploit the ultrasound features in addition to the audible
features.

Our training dataset contains 15 participants’ clean speech col-
lected by the Samsung Galaxy S8 smartphone. Each participant’s
clean speech is mixed with 20 different noise settings. For each noise
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setting, the number of interfering speakers 𝑛 is uniformly distributed
in [0, 4], and the SNR is uniformly distributed in [−9, 6] dB (-1.5 dB
average). In total, the training data contains 120k 5-second segments
of noisy speech (300 hours).

9.2 UltraSE DNN Implementation
We implement the UltraSE DNN model in Pytorch. The dimension
of feature maps and the parameters of each layer are shown in Figure
3, 6, 10 and Table 1, 2, 3. ReLU activations follow all layers except
for the last layer, where a sigmoid is applied. For training, we use
Adam optimizer with a 1𝑒 − 04 initial learning rate, dropping by 25%
every 5 epochs for a total of 20 epochs. UltraSE has 15.5 M and 3.1
M parameters for the first and second stage DNN.

10 EXPERIMENTAL EVALUATION
We evaluate UltraSE using 4 metrics commonly adopted in SSE
research.
• SDR [72]: Signal-to-distortion ratio, which considers not only
noise/interference, but also acoustic artifacts (e.g., burbling sound)
as distortion to the ground-truth speech;
• SiSNR [73]: Scale-invariant signal-to-noise ratio (Sec. 8.1) which,
unlike the classical SNR, ensures rescaling the estimated signal will
not unfairly improve the metric;
• STOI [74]: Short-time objective intelligibility measure (from 0 to
1);
• PESQ [75]: Perceptual evaluation of speech quality, which models
the mean opinion score ranging from 1 (bad) to 5 (excellent);

10.1 Micro Benchmark Comparison
In this section, our default testing dataset includes another 5 partic-
ipants’ clean speech in the “Towards mic” mode, collected using
Samsung S8. Our testing environment includes 6 different interfer-
ence plus noise settings: 1𝑠 +𝑎, 2𝑠 +𝑎, 3𝑠 +𝑎, > 3𝑠 +𝑎, 2𝑠 (“s” and “a”
denotes interfering speaker and ambient noise) and the hardest case
>= 2 same-speaker intererences plus noise (>= 2𝑠𝑠 + 𝑎). The SNR
level of noisy speech signals is uniformly distributed in [−9, 6] dB.
All the results of UltraSE are from a single model generated from
the training dataset.

We compare UltraSE with 4 state-of-the-art SSE methods,
PHASEN [12] (T-F domain method), SEGAN [28] (T domain method),
AVSPEECH [6] (Audio-visual method), Conv-TasNet [4] (Speech
separation method). For a fair comparison, we reimplemented
PHASEN, SEGAN and Conv-TasNet and train and test them on
the UltraSpeech dataset. PHASEN and SEGAN only use the 1𝑠 + 𝑎

training set, since they are designed for speech enhancement, not
separation. The results for PHASEN and SEGAN under 1𝑠 + 𝑎 (see
Table 4) is similar to the original work, which shows the correct-
ness of our implementation. For the speech separation method, i.e.,
Conv-TasNet, we first train and evaluate it in the “2𝑠” environment
to check the correctness of our implementation. Then, we use the
“2𝑠 + 𝑎” dataset to train the model with the 2 speakers’ clean speech
as ground truth, and compare the results in other environments in
Table 4. For AVSPEECH, since our data set does not have the video
recordings, we directly use the results in [6] as baselines.

Compared to the state-of-the-art speech enhancement methods,
UltraSE significantly improves the speech quality and intelligibil-
ity in both noisy and multi-speaker environments. Table 4 shows

Environment Methods SDR SiSNR STOI PESQ

1𝑠 + 𝑎

UltraSE 17.14 17.25 0.87 3.52
PHASEN 15.63 15.20 0.82 3.05
SEGAN 5.48 5.50 0.64 2.32
AVSPEECH 16.0 / / /
Conv-TasNet 12.23 12.58 0.76 2.48

2𝑠 + 𝑎

UltraSE 10.55 10.65 0.76 2.80
PHASEN 5.20 5.22 0.65 2.23
SEGAN 2.01 1.96 0.54 1.69
AVSPEECH 10.1 / / /
Conv-TasNet 10.23 10.38 0.74 2.40

3𝑠 + 𝑎

UltraSE 10.88 10.94 0.76 2.81
PHASEN 5.14 5.15 0.66 2.15
SEGAN 1.74 1.78 0.55 1.68
Conv-TasNet 6.31 6.50 0.71 2.11

> 3𝑠 + 𝑎

UltraSE 12.10 12.17 0.78 2.66
PHASEN 5.13 5.13 0.67 2.14
SEGAN 0.71 0.72 0.53 1.67
Conv-TasNet 6.23 6.41 0.71 2.15

>= 2𝑠𝑠 + 𝑎

UltraSE 8.90 8.97 0.72 2.52
PHASEN 5.03 5.05 0.62 2.10
SEGAN 1.27 1.29 0.56 1.69
Conv-TasNet 5.69 5.93 0.73 2.21

2𝑠
UltraSE 14.85 14.86 0.86 3.35
AVSPEECH 10.3 / / /
Conv-TasNet 14.98 15.02 0.85 2.97

Table 4: UltraSE Micro Benchmark

the testing results under all input SNR levels uniformly distributed
in [−9, 6] dB. UltraSE outperforms PHASEN and SEGAN across
all the 4 metrics. In the 1𝑠 + 𝑎 environment, UltraSE achieves an
average 17.25 SiSNR (18.75 ΔSiSNR) and 3.50 PESQ. In other en-
vironments with multi-speaker interference, the ultrasound sensing
modality plays a more prominent role, improving SiSNR by 6.04 dB
and 9.77 dB on average over the 2 baselines respectively. Even for
the hardest case >= 2𝑠𝑠 + 𝑎, UltraSE still achieves 8.97 dB SiSNR
and 2.52 PESQ. In addition, UltraSE achieves slightly higher perfor-
mance than AVSPEECH, likely because the ultrasonic features are
sampled at finer time granularity than video frames, and can better
align with the speech signals.

Most of the existing speech separation methods can only work
with limited number of interfering speakers (2 ∼ 3) and without
ambient noise [29, 30, 73, 76]. As shown in Table 4, when train-
ing the Conv-TasNet by using the “2𝑠 + 𝑎” dataset, Conv-TasNet
achieves good performance in the “2𝑠 + 𝑎” and “2𝑠” setup, but is not
general in other sophisticated environments. In comparison, UltraSE
outperforms Conv-TasNet by around 6 dB of SDR or SiSNR, 10%
in STOI and 24% in PESQ, under the > 3𝑠 + 𝑎 setup.

The scatter plot in Figure 11 shows the input and output SiSNR
for each sentence in the testing dataset which includes all 6 envi-
ronments. UltraSE consistently achieves high performance across
different environments and sentences, with an average 14.75 dB
SiSNR gain. Even in the worst case with −9 dB input, the enhanced
speech achieves 8.86 dB SiSNR on average.

10.2 Ablation Study
We conduct an ablation study to better understand the performance
of different design components in UltraSE. The testing dataset here
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Figure 11: Noisy SiSNR v.s. Enhanced SiSNR

includes all the environments except the “>= 2𝑠𝑠 + 𝑎” which is not
very common in practice. Table 5 summarizes the results.

“No T domain” represents the DNN model without the “T do-
main waveform speech enhancement”. The results indicate that this
module barely influences the STOI, a metric for speech intelligibility.
But it helps gaining 0.46 dB SDR, 0.58 dB SiSNR, 0.12 PESQ re-
spectively, which proves it can further improve the perceptual quality
of the speech generated from the T-F domain multi-modal network.

“No cGAN” represents the model without the “cGAN-based
cross-modal model training”. All the metrics significantly improves
when applying the cGAN, since our cGAN design forces the network
to learn the correlation between the ultrasound and speech, which is
the key principle behind the UltraSE design.

“No Fusion Network” means that the feature maps of ultrasound
and speech signals are directly concatenated in the T-F domain
without the fusion block. The performance slightly decreases, since
the fusion block helps the multi-modal features to “cross-talk” with
each other.

“No Ultrasound” represents the network without the ultrasound
stream at the beginning of the network. The result becomes close
to the traditional speech enhancement method without ultrasound
sensing, e.g., PHASEN.

10.3 System Efficiency
Time Consumption: We evaluate the run-time processing latency
of UltraSE on 3 platforms, including a NVIDIA GTX 2020 (GPU),
an Intel i9-9980 3.00GHz (CPU) and Samsung Galaxy S8 with Qual-
comm Snapdragon 835 CPU (Smartphone). The first two correspond
to the case where UltraSE is offloaded to a trusted cloud or edge
server. Table 6 summarizes the results. The GPU server only expe-
riences 14.85 ms latency which is acceptable for VoIP applications
(150 ms maximum [77]). The smartphone case is measured by using
Pytorch Mobile [78] on Samsung Galaxy S8. Note that the latest
version of Pytorch Mobile [78] only supports single-CPU processing
without any GPU/NPU support. Thus, the latency is relatively high
(25.08 s to process 5 s speech), which is acceptable only for offline
processing applications, e.g., audio message and audio recording.
There exists a rich literature [79] on improving DNN efficiency on
smartphones, which demonstrated more than 50× latency reduction
by using mobile GPU/NPU. We will explore such solutions for our
future work. Also note that UltraSE needs to process the input in
segments of 5 s due to the use of Bi-LSTM blocks. This means its
SSE starts taking effect after a 5 s initial bootstraping period.

Energy Consumption: Our experiments show that a typical
smartphone (Samsung S8) can continuously use UltraSE to record
speech while emitting ultrasound signals for 60.57 hours with dis-
play off. Our measurement using Android Profiler [80] reveals that
UltraSE’s CPU load is 48.7% on average, and power consumption is

SDR SiSNR STOI PESQ
UltraSE (Testing data 96 kHz) 13.10 13.21 0.80 3.01
UltraSE (Testing data 48 kHz) 13.08 13.18 0.79 2.99
- No T domain 12.64 12.63 0.80 2.89
- No cGAN 10.80 10.85 0.77 2.60
- No Fusion Network 9.96 10.00 0.76 2.54
- No Ultrasound 7.78 7.68 0.70 2.39

Table 5: UltraSE ablation study.

Preprocess Stage 1 Stage 2
GPU 0.55 ms 12.02 ms 2.28 ms
CPU 0.05 s 1.38 s 0.26 s
Smartphone 0.25 s 23.02 s 1.81 s

Table 6: Inference time for processing 5 s speech.

at the level of “1” in between the scale of 0 to 3. When offloading to
servers, the computational energy consumption becomes negligible.
The only overhead is that UltraSE needs to upload the original 48/96
kHz sampling rate audio stream with both audible sounds and ultra-
sounds to the server, and then download the enhanced speech from
the server. Our experiments show that Samsung S8 can continuously
run UltraSE and upload/download the audio streaming via WiFi in
the offloading mode for 10.82 hours. Server offloading may incur
additional issues such as security, but this is beyond the scope of our
current work.

10.4 Generalization
Sampling Frequency: UltraSE model trained by 96 kHz sam-
pling rate dataset can be directly used to enhance the testing speech
recorded at 48 kHz sampling rate. The feature resolution at 48 kHz
sampling rate is identical to the case at 96 kHz sampling rate as long
as the FFT window length and hop length of ultrasound sensing fea-
tures keep 85 ms and 10 ms respectively. Table 5 shows a negligible
performance degradation when testing the 48/ 96 kHz sampling rate
dataset on the 96 kHz sampling rate trained model.

Holding Styles: In the “Phone call” mode (Figure 12(a)), the
user’s face partially occludes the ultrasonic signals, so we train a
model which is different from the “Towards mic” mode (Figure
12(c)). UltraSE can automatically select the model using the IMU-
based holding style detection algorithm built into smartphones [81].
Our experiments show that, under −1.5 dB average input SNR, the
performance of “Phone call” (12.47 dB SiSNR) is slightly lower than
the “Towards mic” (13.12 dB SiSNR) due to the occlusion.

We further evaluate the sensitivity of each model under differ-
ent mouth-to-mic distances. Figure 12(b) and Figure 12(d) show
the average SNR of ultrasound (SNR𝑔 ) vs. the SiSNR of enhanced
speech. For both holding styles, 𝑆𝑁𝑅𝑔 well exceeds 10 dB, and
speech SiSNR stays around 12 dB within 20 cm distance. The exper-
iment implies that the UltraSE model performs consistently as long
as the mouth-to-mic distance remains within 20 cm.

Motion interference: We measure the impacts of interference
from 3 major motion artifacts, i.e., respiration, hand gestures and
walking. The experiments were conducted when the mouth is 15
cm and 2 cm away from the microphone in the “Towards mic” and
“Phone call” mode, respectively. (i) The respiration frequency (∼30
bpm) is far less than the articulatory motions (> 10 Hz), so it creates
negligible impacts on UltraSE. (ii) Hand gestures introduce similar
Doppler effect as the articulatory motion [36, 40, 51], which may
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Figure 12: SNR of articulatory gestures.

Hand Gesture Interference

Figure 13: SNR𝑔 under hand gesture interference

cause non-negligible interference. We measure the articulatory ges-
tures’ SNR𝑔 under the pushing hand gesture interference. The SNR𝑔

is sampled for each 2 cm in 7 different angles from 0◦ to 90◦, at a
step of 15◦, close to the user’s mouth. Figure 13 shows the spatial
distribution [82] of SNR𝑔 for the “Towards mic” mode. As long as
the hand gesture is > 25 cm away from the mouth (which is typical
in daily usage scenarios), the SNR𝑔 remains above 10 dB which
suffices for UltraSE (Figure 12). A microphone array can be used
to focus on the user’s mouth region to further mitigate interference
[40], but this is beyond the scope of UltraSE. We omit the “Phone
call” mode since the microphone is much closer to the mouth and the
sensing SNR𝑔 stays high. (iii) When other people walk nearby (0.8 m
away), we found that SNR𝑔 is barely impacted since the ultrasound
volume is relatively low, and the user’s mouth is much closer.

Overall, the articulatory gestures’ SNR𝑔 is sufficiently high (> 10
dB), and the UltraSE model is unaffected by the motion artifacts in
daily usage scenarios.

Generalizations across smartphones: Different smartphones
may have different speaker-mic layout. For example, the distances
between the bottom microphone and speaker are 5 mm, 25 mm and
25 mm for Samsung S8, LG G8S ThinQ and VIVO X20 respec-
tively. The high-frequency response of the speaker and microphone
may also vary across phone models [83]. When applying the DNN
model trained by the Samsung S8 dataset directly to LG G8S ThinQ
and VIVO X20, the SiSNR of enhanced speech becomes 9.21 dB
and 9.53 dB, respectively. which is lower than the same-phone case
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Figure 14: Real-world Usage WER.
(13.21 dB), but still higher than the SiSNR without ultrasound sens-
ing (7.68 dB). To maintain the optimal performance, a straightfor-
ward way is to perform a one-time training data collection for each
phone model. Alternatively, we can enrich the UltraSpeech dataset
with a diverse set of smartphones that cover the typical hardware
configurations. This is left for our future work.

Real-world Usage Experiments: We asked the users to use Ul-
traSE across 4 different real-world environments, i.e. 1) a bathroom
environment with exhaust fan and running water noise (75 dBA on
average); 2) a living room environment with television noise (55 dBA
on average); 3) an indoor conference environment with conversation
noise (60 dBA on average); 4) an outdoor roadside environment with
vehicle noise (60 dBA on average). Unlike synthetic noisy speech,
we can not capture the ground truth clean speech and evaluate the
metrics like SDR, SiSNR, STOI and PESQ in these scenarios. Thus,
to evaluate the performance of UltraSE for real-world usage, we use
the ASR Word Error Rate𝑊𝐸𝑅 = 𝑆+𝐷+𝐼

𝑁
as the metric, where 𝑆 , 𝐷 ,

𝐼 , and 𝑁 are the number of substitutions, deletions, insertions, totals
of targeted user’s spoken words respectively. Specifically, we asked
the users to speak at least 50 sentences in the TIMIT speech corpus
[9] across different environments. Figure 14 shows the WER with
and without UltraSE across different environments. In non-speech
noisy environments, i.e., bathroom and roadside, UltraSE slightly
improve the ASR speech recognition rate since ASR itself has the
ability to mitigate background ambient noise interference. In speech
noisy environments, i.e., living room and conference, WER is higher
than 100% since there exists many word insertions and substitutions
introduced by non-targeted user’s speech. UltraSE achieves signif-
icantly improvement in such cases since it is able to separate the
desired speaker voice from noises by using ultrasound sensing.

11 CONCLUSION
We have demonstrated that ultrasonic sensing can serve as a com-
plementary modality to solve the cocktail party problem. Our Ul-
traSE system introduces general DNN mechanisms to enable such
capabilities, e.g., multi-modal multi-domain fusion network and
cGAN-based training model based on a novel cross-modal Siamese
network. UltraSE points to a novel direction that fuses wireless
sensing capabilities to bring machine perception to a new level.
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