
Depth Aware Finger Tapping on Virtual Displays

Ke Sun†, Wei Wang†, Alex X. Liu†‡, Haipeng Dai†

†State Key Laboratory for Novel Software Technology, Nanjing University, China
‡Dept. of Computer Science and Engineering, Michigan State University, U.S.A.

kesun@smail.nju.edu.cn,ww@nju.edu.cn,alexliu@cse.msu.edu,haipengdai@nju.edu.cn

ABSTRACT
For AR/VR systems, tapping-in-the-air is a user-friendly solution

for interactions. Most prior in-air tapping schemes use customized
depth-cameras and therefore have the limitations of low accuracy
and high latency. In this paper, we propose a fine-grained depth-
aware tapping scheme that can provide high accuracy tapping
detection. Our basic idea is to use light-weight ultrasound based
sensing, along with one COTS mono-camera, to enable 3D tracking
of user’s fingers. The mono-camera is used to track user’s fingers
in the 2D space and ultrasound based sensing is used to get the
depth information of user’s fingers in the 3D space. Using speakers
and microphones that already exist on most AR/VR devices, we
emit ultrasound, which is inaudible to humans, and capture the
signal reflected by the finger with the microphone. From the phase
changes of the ultrasound signal, we accurately measure small
finger movements in the depth direction. With fast and light-weight
ultrasound signal processing algorithms, our scheme can accurately
track finger movements andmeasure the bending angle of the finger
between two video frames. In our experiments on eight users, our
scheme achieves a 98.4% finger tapping detection accuracy with FPR
of 1.6% and FNR of 1.4%, and a detection latency of 17.69ms , which
is 57.7ms less than video-only schemes. The power consumption
overhead of our scheme is 48.4% more than video-only schemes.

CCS CONCEPTS
• Human-centered computing → Interface design proto-

typing; Gestural input;

KEYWORDS
Depth aware, Finger tapping, Ultrasound, Computer Vision

ACM Reference Format:
Ke Sun†, Wei Wang†, Alex X. Liu†‡, Haipeng Dai†. 2018. Depth Aware
Finger Tapping on Virtual Displays. In Proceedings of MobiSys’18. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3210240.3210315

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiSys’18, June 10–15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5720-3. . . $15.00
https://doi.org/10.1145/3210240.3210315

(a) Virtual keypad (b) Cardboard VR setup

Figure 1: Tapping in the air on virtual displays

1 INTRODUCTION
In this paper, we consider to measure the movement depth of

in-air tapping gestures on virtual displays. Tapping, which means
selecting an object or confirming, is a basic Human Computer
Interaction (HCI) mechanism for computing devices. Traditional
tapping-based interaction schemes require physical devices such
as keyboards, joysticks, mouses, and touch screens. These physical
devices are inconvenient for users to interact on virtual displays
because users need to hand hold them during the interaction with
the AR/VR system, which limits the freedom of user hands in inter-
acting with other virtual objects on the display. For AR/VR systems,
tapping-in-the-air is a user-friendly solution for interactions. In
such schemes, users can input text, open apps, select and size items,
and drag and drop holograms on virtual displays, as shown in Fig-
ure 1. Tapping-in-the-air mechanisms enrich user experience in
AR/VR as user hands are free to interact with other real and virtual
objects. Furthermore, fine-grained bending angle measurements of
in-air tapping gestures provide different levels of feedbacks, which
compensates for the lack of haptic feedback.

Most prior in-air tapping based schemes on virtual displays use
customized depth-cameras and therefore have the limitations of low
accuracy and high latency. First, most depth-cameras provide depth
measurement with a centimeter level accuracy [17, 41], which is
inadequate for tapping-in-the-air because tapping gesture often
involves small finger movements in the depth direction depending
on the finger length and the bending angle of fingers [12]. That
explains why they often require users to perform finger movements
of several inches, such as touching the index finger with the thumb,
to perform a click [22], which leads to much lower tapping speed
and low key localization accuracy. Second, the latency of camera
based gesture schemes is limited by their frame rate and their high
computational requirements. Due to the lack of haptic feedback,
interactions with virtual objects are different from interactions with
physical keypads, and they solely rely on visual feedback [24]. Vi-
sual feedback with a latency of more than 100ms is noticeable to

https://doi.org/10.1145/3210240.3210315
https://doi.org/10.1145/3210240.3210315

MobiSys’18, June 10–15, 2018, Munich, Germany Ke Sun et al.

Time (millisecond)
0 50 100 150 200 250 300 350 400 450 500

I/Q
 (n

or
m

al
iz

ed
)

-300

-200

-100

0

100

200

300

400

 I
Q

Figure 2: Comparison between video and audio streams

users and degrades user experience [23]; however, it is challeng-
ing to provide visual feedback within 100ms , because vision-based
schemes require a series of high latency operations, such as captur-
ing the video signal, recognizing gestures using computer vision
algorithms, and rendering the virtual object on the display. While
high-end cameras on smartphones can now provide high speed
video capture at more than 120 fps, the high computational costs
still limit the processing to a low frame rate in realtime, e.g., 15
fps [43]. This explains why commercial AR systems such as Leap
Motion [25] rely on the computational power of a desktop and
cannot be easily implemented on low-end mobile devices.

In this paper, we propose a fine-grained depth-aware tapping
scheme for AR/VR systems that allows users to tap in-the-air, as
shown in Figure 1. Our basic idea is to use light-weight ultrasound
based sensing, along with one Commercial Off-The-Shelf (COTS)
mono-camera, to enable 3D tracking of users’ fingers. To track fin-
gers in the 2D space, the mono-camera is enough for us to achieve
that with light-weight computer vision algorithms. To capture the
depth information in the 3D space, the mono-camera is no longer
sufficient. Prior vision-based schemes require extra cameras and
complex computer vision algorithms to obtain the depth infor-
mation [17, 41]. In this paper, we propose to use light-weight ul-
trasound based sensing to get the depth information. Using the
speakers and microphones that already exist on most AR/VR de-
vices, we emit inaudible sound wave from the speaker and capture
the signal reflected by the finger with the microphone. We first
use ultrasound information to detect that there exists a finger that
performs the tapping down motion, and then use the vision in-
formation to distinguish which finger performs the tapping down
motion. By measuring the phase changes of the ultrasound signals,
we accurately measure fine-grained finger movements in the depth
direction and estimate the bending angles of finger tappings. With
fast and light-weight ultrasound signal processing algorithms, we
can track finger movements within the gap between two video
frames. Therefore, both detecting finger tapping motion and updat-
ing the virtual objects on virtual display can be achieved within
one-video frame latency. This fast feedback is crucial for tapping-
in-the-air as the system can immediately highlight the object that
is being pressed on user display right after detecting a user tapping
motion.

There are three challenges to implement a fine-grained depth-
aware tapping scheme. The first challenge is to achieve high recog-
nition accuracy and fine-grained depthmeasurements for finger tap-
pings. Using either the video or the ultrasound alone is not enough
to achieve the desired detection accuracy. For the camera-based
approach, the detection accuracy is limited by the low frame-rate
where the tapping gesture is only captured in a few video frames.

For the ultrasound-based approach, the detection accuracy is lim-
ited by the interference of finger movements because it is difficult
to tell whether the ultrasound phase change is caused by finger
tapping or lateral finger movements. To address this challenge, we
combine the ultrasound and the camera data to achieve higher tap-
ping detection accuracy. We first detect the finger movements using
ultrasound signal. We then look back at the results of previously
captured video frames to determine which finger is moving and the
movement direction of the given finger. Our joint finger tapping
detection algorithm improves the detection accuracy for gentle
finger tappings from 58.2% (camera-only) to 97.6%.

The second challenge is to achieve low-latency finger tapping
detection. In our experiments, the average duration of finger tap-
ping gestures is 354ms , where the tapping down (from an initial
movement to “touching” the virtual key) lasts 152ms and the tap-
ping up (moving back from the virtual key to the normal position)
lasts 202ms . Therefore, a 30-fps camera only captures less than 4
frames for the tapping down gesture in the worst case. However,
the feedback should be provided to the user as soon as the finger
“touches” the virtual key; otherwise, the user tends to move for
an extra distance on each tapping, which slows down the tapping
process and worsen user experience. To provide fast feedback, a
system should detect finger movements during the tapping down
stage. Accurately recognizing such detailed movements in just four
video frames is challenging, while waiting for more video frames
leads to higher feedback latency. To address this challenge, we use
the ultrasound to capture the detailed movement information as
shown in Figure 2. We design a state machine to capture the differ-
ent movement states of user’s fingers. As soon as the state machine
enters the “tapping state”, we analyze both the ultrasound signal
and the captured video frames to provide a robust and prompt de-
cision on the tapping event. Thus, our scheme can feedback at the
precise timing of “touching”, rather than waiting for more frames
to see that the finger starts moving back.

The third challenge is to achieve affordable hardware and com-
putational cost on mobile devices. Traditional depth-camera based
approaches need dual-camera or extra time-of-flight depth sensors
[2, 10]. Furthermore, the computer vision algorithm for 3D fingertip
localization incurs high computational costs. It is challenging to
achieve 30 fps 3D finger localization, especially on mobile devices
such as the Head-Mounted Display (HMD) or mobile phones. To
address this challenge, we use speakers/microphones as the depth
sensor and combine it with the 2D position information obtained
from ordinary mono-camera with light-weight computer vision
algorithms. Thus, 3D finger location can be measured using existing
sensors on mobile devices with affordable computational costs.

We implemented and evaluated our scheme using commercial
smartphones without any hardware modification. Compared to the
video-only scheme, our scheme improves the detection accuracy for
gentle finger tappings from 58.2% to 97.6% and reduces the detection
latency by 57.7ms . Our scheme achieves 98.4% detection accuracy
with FPR of 1.6% and FNR of 1.4%. Furthermore, the fine-grained
bending angle measurements provided by our scheme enables new
dimensions for 3D interaction as shown by our case study. However,
compared to a video-only solution, our system incurs a significant
power consumption overhead of 48.4% on a Samsung Galaxy S5.

Depth Aware Finger Tapping on Virtual Displays MobiSys’18, June 10–15, 2018, Munich, Germany

System Sensing methods Sensors Range Depth arruracy Iteraction
Kinect v1[21, 34] Light Coding IR projector&IR camera 0.8 ∼ 4m about 4cm Human pose
Kinect v2[21, 34] Time of Flight IR projector&IR camera 0.5 ∼ 4.5m about 1cm Human pose

Leap Motion[25, 41] Binocular camera IR cameras&IR LEDs 2.5 ∼ 60cm about 0.7mm Hand track and gesture
Hololens[22] Time of Flight IR projector&IR camera 10 ∼ 60cm about 1cm Hand gesture and gaze
RealSense[15] Light Coding IR projector&IR camera 20 ∼ 120cm about 1cm Hand track and gesture
Air+Touch[8] Infrared image IR projector&IR camera 5 ∼ 20cm about 1cm Single finger gesture
Our scheme Phase change Microphone&mono-camera 5 ∼ 60cm 4.32mm Hand track and gesture

Table 1: Existing interface schemes for augmented reality systems

2 RELATEDWORK
Related work can be categorized into four classes: AR/VR gesture

recognition, in-air tapping-based interaction on virtual displays,
tapping based interaction for mobile devices, and device-free ges-
ture recognition and tracking.
AR/VR Gesture Recognition:Most existing AR/VR devices use
IR projectors/IR cameras to capture the depth information for ges-
ture recognition based on structured light [2] or time of flight [10],
as shown in Table 1. Structured light has been widely used for
3D scene reconstruction [2]. Its accuracy depends on the width of
the stripes used and their optical quality. A time-of-flight camera
(ToF camera) [10] is a range imaging camera system that resolves
distance based on the time-of-flight measurements of a light signal
between the camera and the subject for each point of the image.
However, neither of them focuses on moving object detection and
they often incur high computational cost. There are other interac-
tion schemes, including gaze-based interactions [33], voice-based
interactions [4, 46], and brain-computer interfaces [32]. However,
tapping on virtual buttons is one of the most natural ways for users
to input text on AR/VR devices.
In-air Tapping-based Interaction on Virtual Displays: Exist-
ing interaction schemes for VR/AR environments are usually based
on in-air tapping [14, 15, 21, 22, 25, 42]. Due to the high compu-
tational cost and low frame rate, commercial schemes are incon-
venient for users [15, 21, 22, 25]. Higuchi et al. used 120 fps video
cameras to capture the gesture and enable a multi-finger AR typing
interface [14]. However, due to the high computational cost, the
video frames are processed on a PC instead of the mobile device.
Comparing with such systems, our scheme uses a light-weight ap-
proach that achieves high tapping speed and low latency on widely
available mobile devices.
Tapping Based Interaction for Mobile Devices: Recently, vari-
ous novel tapping based approaches for mobile devices have been
proposed, such as camera-based schemes [26, 43], acoustic signals
based schemes [18, 37], and Wi-Fi based schemes [3, 6]. These ap-
proaches focus on exploring alternatives for tapping on the physical
materials in the 2D space [3, 6, 18, 26, 37, 43]. In comparison, our
approach is an in-air tapping scheme addressing the 3D space lo-
calization problem, which is more challenging and provides more
flexibility for AR/VR.
Device-free Gesture Recognition and Tracking: Device-free
gesture recognition is widely used for human-computer interaction,
which mainly includes vision-based [8, 21, 22, 25, 35, 45], RF-based
[1, 11, 16, 20, 31, 36, 39, 40] and sound-based [7, 13, 27, 38, 44]. Vi-
sion based systems have been widely used in AR/VR systems that
have enough computational resources [8, 21, 22, 25, 35]. However,
they incur high computational cost and have limited frame rates

so that they cannot be easily ported to mobile devices. RF based
systems use the radio waves reflected by hands to recognize prede-
fined gestures [1, 7, 13, 16, 20]. However, they cannot provide high
accuracy tracking capability, which is crucial for in-air tappings.
In comparison, our scheme provides fine-grained localization for
fingertips and can measure the bending angle of the moving finger.
Sound-based systems, such as LLAP [38] and Strata [44] , use phase
changes to track hands and achieve cm-level accuracy for 1D and
2D tracking, respectively. FingerIO [27] proposes an OFDM based
hand tracking system and achieves a hand location accuracy of
8mm and allows 2D drawing in the air using COTS mobile devices.
However, both schemes treat the hand as a single object and only
provide tracking in the 2D space. The key advantage of our scheme
is on achieving fine-grained multi-finger tracking in the 3D space
as we fuse information from both ultrasound and vision.

3 SYSTEM OVERVIEW
Our system is a tapping-in-the-air scheme on virtual displays. It

uses a mono-camera, a speaker, and two microphones to sense the
in-air tapping. The camera captures the video of users’ fingers at a
speed of 30 fps, without the depth information. The speaker emits
human inaudible ultrasound at a frequency in the range of 18 ∼
22kHz. The microphones capture ultrasound signals reflected by
users’ fingers to detect finger movements. The system architecture
consists of four components as shown in Figure 3.
Fingertip Localization (Section 4): Our system uses a light-
weight fingertip localization algorithm in video processing. We first
use skin color to separate the hand from the background and detects
the contour of the hand, which is a commonly used technique for
hand recognition [30]. Then, we use a light-weight algorithm to
locate all the fingertips captured in the video frame.
Ultrasound Signal Phase Extraction (Section 5): First, we down
convert the ultrasound signal. Second, we extract the phase of the
reflected ultrasound signal. The ultrasound phase change corre-
sponds to the movement distance of fingers in the depth direction.
Tapping Detection and Tapping Depth Measurement (Sec-
tion 6): We use a finite state machine based algorithm to detect
the start of the finger tapping action using the ultrasound phase
information. Once the finger tapping action is detected, we trace
back the last few video frames to confirm the tapping motion. To
measure the strength of tapping, we combine the depth acquired
from the ultrasound phase change with the depth acquired from
the video frames to get the bending angle of the finger.
Keystroke Localization (Section 7):When the user tries to press
a key, both the finger that presses the key and the neighboring
fingers will move at the same time. Therefore, we combine the
tapping depth measurement with the videos to determine the finger
that has the largest bending angle to recognize the pressed key.

MobiSys’18, June 10–15, 2018, Munich, Germany Ke Sun et al.

Microphone

Speaker

Emit	18~22kHz	
CW	sound	signal

Receive
sound	signal

Sound	signal	
down	conversion

Sound	signal	
phase	change	
measurement

Detect	the	start	of	
the	finger	tapping	action

Ultrasound	Signal	Phase	Extraction	

Camera

Receive	frame Hand	
detection

Fingertips	
detection

Fingertip	Localization	 Tapping	Detection	and	Tapping	Depth	Measurement	

Confirm	the	tapping	action	
based	on	finite	state	machine	

Tapping	Depth	
Measurement	

Keystroke	Localization	

Keystroke	localization	
based	on	the	depth	

measurement	

Figure 3: System architecture

4 FINGERTIPS LOCALIZATION
In this section, we present fingertip localization, the first step of

video processing. We use light-weight computer vision algorithm
to locate the fingertips in the horizontal 2D space of the camera.

4.1 Adaptive Skin Segmentation
Given a video frame, skin segmentation categorizes each pixel

to be either a skin-color pixel or a non-skin-color pixel. Traditional
skin segmentation methods are based on the YUV or the YCrCb
color space. However, surrounding lighting conditions have impacts
of the thresholds for Cr and Cb. We use an adaptive color-based
skin segmentation approach to improve the robustness of the skin
segmentation scheme. Our scheme is based on the Otsu’s method
for pixel clustering [29]. In the YCrCb color space, we first isolate
the red channel Cr , which is vital to human skin color detection.
The Otsu’s method calculates the optimal threshold to separate
the skin from the background, using the grayscale image in the Cr
channel. However, the computational cost of Otsu’s method is high
and it costs 25ms for a 352 × 288 video frame when implemented
on our smartphone platform. To reduce the computational cost, we
use Otsu’s method to get the threshold only on a small number of
frames, e.g., when the background changes. For the other frames,
we use the color histogram of the hand region learned from the
previous frame instead of the Otsu’s method. Note that although our
color-based skin segmentation method can work under different
lighting conditions, it is still sensitive to the background color.
When the background color is close to the skin color, our method
may not be able to segment the hand successfully.

4.2 Hand Detection
We perform hand detection using the skin segmentation results,

as shown in Figure 4(b). We first reduce the noise in the skin seg-
mentation results using the erode and dilate methods. After that,
we use a simplified hand detection scheme to find hand contour.

Our simplified detection scheme is based on the following ob-
servations. First, in the AR scenario, we can predict the size of the
hand in the camera view. As the camera is normally mounted on
the head, the distance between the hand and the camera is smaller
than the length of the arm. Once the full hand is in the view, the size
of the hand contour should at least be larger than a given threshold.
Such threshold can be calculated through the statistics of human
arm length [12] and the area of palm. Therefore, we only need to
perform hand contour detection when there are skin areas larger
than the given threshold. Second, the hand movement has a limited

speed so that we can use the centroid of the hand to track the move-
ment under 30 fps frame rate. After determining that one of the
large contours in the view is the hand, we retrieve the point that has
the maximum distance value from the Distance Transform [5] of
the segmentation image to find the centroid of the palm, as shown
in Figure 4(c). We trace the centroid of the hand rather the entire
contour. This significantly simplifies the tracing scheme because
the centroid normally remains within the hand contour captured
in the last frame due to that the hand movement distance should
be smaller than the palm size between two consecutive frames.

4.3 Fingertip Detection
We then detect the fingertips using the hand contour when

the user makes a tapping gesture. Our model is robust to detect
fingertips’ location with different numbers of fingers. As shown in
Figure 5, we present the most complex situation of a tapping gesture
with five fingertips. Traditional fingertip detection algorithms have
high computational cost, as they detect fingertips by finding the
convex vertex of the contour. Consider the case where the points
on the contour are represented by Pi with coordinates of (xi ,yi).
The curvature at a given point Pi can be calculated as:

θi = arccos
−−−−−→
PiPi−q

−−−−−→
PiPi+q

∥
−−−−−→
PiPi−q ∥∥

−−−−−→
PiPi+q ∥

(1)

where Pi−q and Pi+q are the qth point before/after point Pi on the
contour, −−−−−→PiPi−q and −−−−−→PiPi+q are the vectors from Pi to Pi−q and
Pi+q , respectively. The limitation of this approach is that we have
to go through all possible points on the hand contour. Scanning
through all points on the contour takes 42ms on smartphones on
average in our implementation. Thus, it is not capable to achieve
30 fps rate.

To reduce the computational cost for fingertip detection, we first
compress the contour into segments and then use a heuristic scheme
to detect fingertips. Our approach is based on the observations
that while tapping, people usually put their hand in front of the
camera with the fingers above the palm as shown in Figure 5. This
gesture can serve as an initial gesture to reduce the effort of locating
the fingertips. Under this gesture, we can segment the contour by
finding the extreme points on the Y axis as shown in Figure 5. The
four maximum points, R2,R4,R5 and R6 correspond to the roots of
fingers. Using this segmentation method, we just need to consider
these extreme points while ignoring the contour points in between
to reduce the computational costs.

Although the extreme-points-based scheme is efficient, it might
lead to errors as the hand contour could be noisy. We use the

Depth Aware Finger Tapping on Virtual Displays MobiSys’18, June 10–15, 2018, Munich, Germany

(a) Input frame (b) Binary image

(c) Hand contour distance transform
image

(d) Fingertips image

Figure 4: Adaptive fingertip 2D localization

geometric features of the hand and the fingers to remove these
noisy points on the hand contour. First, the fingertips should be
above the palm, shown as the black circle in Figure 4(d). Suppose
thatC (x ′′,y′′) is the centroid of the palm calculated by the Distance
Transform Image.

We check that all the fingertips points Fi , with coordinates of
(xi ,yi), should satisfy:

yi < y′′ − r , ∀i ∈ {1, 2, 3, 4, 5}. (2)
Second, the length of the fingers, including the thumb, is three
times than its’ width [48]. We can calculate the width of fingers by:

wi =

∥
−−−→
R1R2∥, if i ∈ {1}
∥
−−−−−−−→
Ri+1Ri+2∥, if i ∈ {2, 3, 4, 5} .

(3)

The lengths of the fingers are

li =

�����

�����

−−−→
R1F1 ∥

−−−−→
R1R2 ∥2−

−−−−→
R1R2

−−−→
R1F1

−−−−→
R1R2

∥
−−−−→
R1R2 ∥2

�����

�����
,

if i ∈ {1}
�����

�����

−−−−−−−→
Ri+1Fi+2 ∥

−−−−−−−−→
Ri+1Ri+2 ∥2−

−−−−−−−−→
Ri+1Ri+2

−−−−−−−→
Ri+1Fi+1

−−−−−−−−→
Ri+1Ri+2

∥
−−−−−−−−→
Ri+1Ri+2 ∥2

�����

�����
,

if i ∈ {2, 3, 4, 5}.
(4)

We check that all the detected fingertips should satisfy:
li
wi
> threshold, ∀i ∈ {1, 2, 3, 4, 5}. (5)

In our implementation, we set the threshold to 2.5. The maxi-
mum points in the contour that can satisfy both Eq. (2) and Eq. (5)
correspond to the fingertips.

As the tapping gesture like Figure 5 recur frequently during
tapping, we calibrate our fingertips’ number and location when we
detect such gestures with different number of fingers. In the case
that two fingers are close to each other or there is a bending finger,
we use the coordinates of fingertips on the x axis to interpolate

!(#$$,&$$)

()(#)$, &)$)
(*(#*$, &*$)

(+(#+$, &+$)
(,(#,$, &,$)(-(#-$, &-$)

(.(#.$, &.$) (/(#/$, &/$)

0)(#),&))

0*(#*,&*)
0+(#+,&+)

0,(#,,&,)

0-(#-,&-)

1

2)

3)

2*

3*

2+

3+ 2-
3-

2,

#

&

4(0,0)

3,

Figure 5: Hand geometric model
the fingertip locations. Note that our finger detection algorithm
focuses on the case for tapping. It might not be able to detect all
fingers when the fingers are blocked by other parts of the hand.

5 DEPTH MEASUREMENT
We use the phase of ultrasound reflected by the fingers to mea-

sure finger movements. This phase-based depth measurement has
several key advantages. First, ultrasound based movement detec-
tion has low latencies. It can provide instantaneous decision of the
finger movement between two video frames. Second, ultrasound
based movement detection gives accurate depth information, which
helps us to detect finger tappings with a short movement distance.

Existing ultrasound phase measurement algorithms, such as
LLAP [38] and Strata [44], cannot be directly applied to our system.
This is because they treat the hand as a single object, whereas we
detect finger movements. The ultrasound signal changes caused
by hand movements are much larger than that caused by the fin-
ger movements and the multipath interference in finger move-
ments is much more significant than hand movements. As illus-
trated in Figure 6, the user first pushes the whole hand towards the
speaker/microphones and then taps the index finger. Themagnitude
of signal change caused by hand movement is 10 times larger than
that of tapping a single finger. Furthermore, we can see clear regular
phase changes when moving the hand in Figure 6. However, for
the finger tapping, the phase change is irregular and there are large
direct-current (DC) trends during the finger movements caused
by multipath interference. This makes the depth measurement for
finger tapping challenging.

To rule out the interference of multipath and measure the fin-
ger tapping depth under large DC trends, we use a heuristic algo-
rithm called Peak and Valley Estimation (PVE). The key difference
between PVE and the existing LEVD algorithm [38] is that PVE
specifically focuses on tapping detection and avoids the error-prone
step of static vector estimation in LEVD. As shown in Figure 6, it is
difficult to estimate the static vector for finger tapping because the
phase change of finger tapping is not obvious and it is easy to be
influenced by multipath interference. To handle this problem, we
rely on the peak and valley of the signal to get the movement dis-
tance. Each time the phase changes by 2π , there will be two peaks
and two valleys in the received signal. We can measure the phase
changes of π/2 by counting the peaks and valleys. For example,
when the phase changes from 0 to π/2, we will find that the signal
change from the I component peak to the Q component peak in
time domain.

MobiSys’18, June 10–15, 2018, Munich, Germany Ke Sun et al.

0 0.5 1 1.5 2 2.5 3 3.5 4

I/Q
 (n

or
m

al
iz

ed
)

-600

-400

-200

0

200

400

600

800

1000

Time (second)

I
Q

Pushing hand

Tapping finger

Time (millisecond)
0 100 200 300 400 500

I/Q
 (n

or
m

al
iz

ed
)

100

150

200

250

300

350

400

450

I
Q

(a) I/Q waveforms

 I (normalized)
700 900 1100 1300 1500 1700

 Q
 (n

or
m

al
iz

ed
)

200

400

600

800

1000

1200

1400

 Pushing hand
 Tapping finger I (normalized)

1000 1050 1100 1150 1200

 Q
 (n

or
m

al
iz

ed
)

900

950

1000

1050

1100

 Tapping finger

Tapping finger

(b) Complex I/Q traces
Figure 6: The difference of phase change between the push-
ing hand and tapping finger

In order to mitigate the effect of static multipaths, we take two
factors into consideration. First, we use the phase magnitude caused
by the reflected moving part to remove large movements. As shown
in Figure 6, the magnitude of signal change caused by hand move-
ment is 10 times larger than that of taping a single finger. As a result,
we set the threshold of the magnitude gap between the adjacent
peak and valley to isolate the finger movement from other move-
ments, which is called “FingerInterval”. Second, there are many
fake extreme points as shown in Figure 7, which are caused by the
noise of static vector. We use the speed of the finger tappings to
exclude the fake extreme points. As shown in Figure 8(d), the finger
tapping only lasts 150ms on average. We can estimate the speed
of the path length change of finger tappings. As the ultrasound
phase changes by 2π whenever the movement distance causes a
path length change equal to the ultrasound wavelength, we set
the threshold of the time duration of π/2 phase change, which is
called “SpeedInterval” in PVE. Using this model, we can exclude
fake extreme points in the signal: if the interval between two con-
tinuous extreme points in I/Q component is beyond the scope of
“SpeedInterval”, we will treat it as an fake extreme point. Note that
this approach only helps us to measure the phase change of integer
multiple of π/2, it can estimate the distance with a granularity of
about 5mm. To further reduce the measurement error, we use the
peak and valley near the beginning and end to estimate the phase
change in the beginning and end of the phase change. We use the
sum of last valley and peak of each component as the static vector
to estimate the beginning and ending phases. To mitigate dynamic
multipaths, we also combine the results of different frequencies
using linear regression.

Time (millisecond)
0 500 1000 1500

I/Q
 (n

or
m

al
iz

ed
)

800

850

900

950

1000

1050

1100

1150

I
Q
Extreme Point
Fake Extreme Point

Figure 7: Peak and valley estimate

6 FINGER TAPPING DETECTION
In this section, we present the finger tapping detection algo-

rithm which combines the information captured by the camera and
microphones to achieve better accuracy.

6.1 Finger Motion Pattern
Tapping-in-the-air is slightly different from tapping on the physi-

cal devices. Due to the absence of haptic feedback from the physical
keys [9], it is hard for the user to perform concurrent finger tappings
in-the-air and resolve the typing sequence using visual feedback.
Furthermore, on virtual keypads, the users should first move their
hand to locate the key then tap from the top of the key. As a result,
we mainly focus on supporting one finger/hand typing in this work.
We leave two hand typing as our future work.

We divide the finger movement during the tapping-in-the-air
process into three parts. The first state is the “moving state”, during
which the user moves their finger to the key that he/she wants to
press. During this state, the movement pattern of the fingers and
hands is quite complex, due to the various ways to press different
keys on virtual displays. It is difficult to build a model for the video
and ultrasound signals in this state. Therefore, we just detect the
state without wasting computational resources and energy in ana-
lyzing the complex pattern. The second state is the “locating state”,
where the user keeps their finger on the target key position briefly
before tapping it. Although this state can hardly be perceived by
human beings, this short pause can be clearly detected by the ultra-
sound or the 120 fps video. The average duration of the “locating
state” is 386.2ms as shown in Figure 8. During this state, both video
and audio signals remain static for a short interval, because the
finger is almost static. The third state is the “tapping state”, where
the user slightly moves their finger up and down to press the key.
In order to detect the finger tap, we divide the “tapping state” into
two states, the “tapping down state”, and the “tapping up state”.

We use RM-ANOVA to analyze the motion pattern of in-air
finger tappings. Five volunteers participated in our user study. Each
user taps on the virtual QWERTY keyboard in AR environments
with a single index finger for five minutes. The virtual keyboard is
rendered on the screen of the smartphone. Since the resolution of
the smartphone used in our experiments is 1920 × 1080, we set the
size of the virtual keys as 132 × 132 pixels.

We use 120 fps video camera to capture in-the-air tapping proce-
dure and do offline computer vision process to analyze the users’ be-
havior. The offline analysis is manually verified to remove incorrect
state segments. The statistical results for the user study are shown in
Figure 8. In general, the process of tapping a single key on the virtual
display will go through all of the three states. However, we still find
three different types of patterns. The first pattern corresponds to the

Depth Aware Finger Tapping on Virtual Displays MobiSys’18, June 10–15, 2018, Munich, Germany

Users
1 2 3 4 5

Ti
m

e
(m

ill
is

ec
on

d)

0

100

200

300

400

500

600

700

800

Moving state
Locating state
Tapping state

(a) Tapping non-adjacent keys
Users

1 2 3 4 5

Ti
m

e
(m

ill
is

ec
on

d)

0

100

200

300

400

500

600

700

800
Moving state
Locating state
Tapping state

(b) Tapping adjacent keys
Users

1 2 3 4 5

Ti
m

e
(m

ill
is

ec
on

d)

0

100

200

300

400

500

600

700

800

Moving state
Locating state
Tapping state

(c) Tapping the same key
Users

1 2 3 4 5

Ti
m

e
(m

ill
is

ec
on

d)

0

100

200

300

400

500

600

700

800

Tapping down state
Tapping up state
Tapping state

(d) Different motion states

Figure 8: Duration of states in different motions

case when the user is tapping a key that is not adjacent to the last
key. The duration of the three states in this case are shown in Figure
8(a). The average duration of “moving state”, “locating state”, and
“taping state” is 697.4ms (SD = 198.4ms), 403.2ms (SD = 36.6ms),
and 388.4ms (SD = 32.4ms), respectively. The second pattern cor-
responds to the case when the user is tapping a neighboring key
which is adjacent to the last key previously tapped. In this case,
the average duration of “moving state”, “locating state”, and “tap-
ping state” is 385.1ms (SD = 85.4ms), 433.4ms (SD = 37.4ms), and
406.2ms (SD = 32.2ms), respectively. We observe that the average
duration of “moving state” drops significantly. In some samples, the
“moving state” may even totally disappear, because the fingertip is
close to the expected key and the user directly moves the finger
while tapping. The third pattern corresponds to the case when the
user is repeatedly tapping the same key. In this case, the “moving
state” is always missing, as shown in Figure 8(c). The average dura-
tion of the “locating state” also drops significantly, because the user
doesn’t need to adjust the location of the fingertip when they are
tapping the same key repeatedly. In some samples, the latter two
cases still have the same patterns as the first case. This is mainly
due to the randomness in the tapping process, especially when the
user is not familiar with the QWERTY keyboard. Figure 8(d) shows
the duration for the “tapping down state” and “tapping up state”.
We observe that the average “tapping down state” duration is just
168.1ms so that it is difficult to use 30 fps video to determine the
exact time of the finger to touch the virtual key.

6.2 Finger Tapping Detection
Our finger tapping detection algorithm is based on the state

machine as shown in Figure 9. We divide the detection process into
three stages. In the first stage, we use the ultrasound to detect that
the motion state enters the “tapping state”. This is because that
ultrasound has much higher sampling rate compared to the video
and it is more sensitive to the motion in the depth direction. As the
ultrasound may have high false positive rates, we invoke the video
processing once motion is detected. Therefore, in the second stage,
the video process will look back to the previous frames captured by
the video to measure the duration of “moving state” and “locating
state”. We check if these states satisfy the state machine as shown
in Figure 9. This helps us to remove false alarms introduced by
ultrasound-based detection. Finally, in the third stage, we use the
nearest-neighbor algorithm to determine the pressed virtual key,
based on the fingertip location during the “locating state”.

In our design, we try to strike a balance between the robustness
of finger tapping detection and the delay of the detection algorithm.
On one hand, to improve the robustness of finger tap detection, we
use the state machine to confirm the finger tapping. On the other

Moving	
state

Locating	
state

Tapping	
state

Locate one key

Tap the finger

Tap a neighboring key

Tap the same key

Move to another key

Move to another key

Move to another key

Figure 9: State machine of finger tapping detection

Camera
4(0,0,0) @(?) 2(0)

2(?) y

x

z

(a) Video model

Camera
4(0,0,0)

x

z
3
@(?)

y

Microphone
;(2), 0,0)

Speaker
<(2*, 0,0)

0=(# 0 , & 0 , D 0)0>(# ? , & ? , D ?)

(b) Audio model

Figure 10: Geometric model

hand, we reduce the delay for displaying the finger tap result by
using the ultrasound-based detection. Once we detect the ultra-
sound phase change in “tapping down state”, the tapping action
is confirmed by the previous video frames and the result can be
rendered in the next output display frame. As a result, the upper
bound for detection delay is one video frame, which is about 41.7ms
for 24 fps video stream.

6.3 Determining the Depth of Finger Tapping
After detecting the tapping action, we measure the fine-grained

depth information for the tapping. With the depth information for
tapping, we can measure the tapping strength to improve users’ vi-
sual feedback. Meanwhile, we can design different keys for different
tapping depth, which will improve users’ input speed. For example,
we can use two different tapping depths to input lower-case letters
and capital letters. The finger tapping depth is represented by the
bending angle of the finger, which is denoted as θ (t), as shown in
Figure 10.

Deep finger tapping: When the finger tapping is performed
with a large bending angle, the duration of the tapping is longer.
Therefore, the video camera can capture more frames during the
tapping. Furthermore, deep finger tappings introduce large finger
length changes in they axis on the video frames, as shown in Figure
10(a). As a result, we use the camera-based model to measure θ (t)

MobiSys’18, June 10–15, 2018, Munich, Germany Ke Sun et al.

for deep finger tappings. Suppose that the initial finger length is
l (0) at time 0 and the shortest finger length during the tapping is
l (t) at time t . Then, the bending angle of finger is given by:

θ (t) = arccos l (t)
l (0) . (6)

Gentle finger tapping: When the bending angle of finger is
small, the duration of the finger tap is short and the camera is not
able to capture enough video frames during the tapping. Further-
more, due to the small bending angle of finger, the finger length
change can hardly been detected by the video frame. The finger
length changes less than 10 pixels in 352×288 resolution. Therefore,
we use the ultrasound phase change to estimate the bending angle
for gentle finger tapping. The propagation path change during the
finger tap from time 0 ∼ t can be measured by the phase change as:

∆d = d (t) − d (0) = −φd (t) − φd (0)2π λ, (7)

where λ is the wavelength of the ultrasound,φd (0) andφd (t) are the
initial and the final phase of the ultrasound, respectively. However,
the propagation path change is different from the depth of finger
tap. As shown in Figure 10(b), the propagation path change during
the finger tap is

∆d =
����
−−→
SF0

���� +
����
−−−→
F0M

���� −
����
−−→
SFt

���� −
����
−−−→
FtM

���� , (8)

where M (l1, 0, 0) is the location of the microphone, S (l2, 0, 0) is
the location of the speaker, F0 (x (0),y (0), z (0)) is the location of
the fingertip at time 0, Ft (x (t),y (t), z (t)) is the location of the fin-
gertip at time t , and d is the euclidean distance between F0 and
Ft , respectively. According to the triangle inequality, d > ∆d/2.
Meanwhile, the different locations of the finger have different
F0 (x (0),y (0), z (0)), which will result in different lengths of ∆d
given the same finger tapping depth of d . When users are tapping
slightly, we can assume that x (0) ≈ x (t) and z (0) ≈ z (t) during the
finger tap. As a result, the final position is Ft (x (0),y (0) − d, z (0))
and we can get the relationship between d and ∆d as:

∆d =
����
−−−−−−−−−−−−−−−−−−−−→
(x (0) − l2, y (0), z (0))

���� +
����
−−−−−−−−−−−−−−−−−−−−−−−→
(l1 − x (0), −y (0), −z (0))

����
−
����
−−−−−−−−−−−−−−−−−−−−−−−−→
(x (0) − l2, y (0) − d, z (0))

���� −
����
−−−−−−−−−−−−−−−−−−−−−−−−−−→
(l1 − x (0), d − y (0), −z (0))

����
(∆d > d > ∆d/2).

(9)

In Eq. (6), we get x (0) and z (0) from the locations of fingertips
in Section 4 and set the parameter y (0) adaptively based on the
finger size in the frame. As a result, we can get d from ∆d by Eq.
(9) by compensating the different location of F0. Consequently, the
bending angle is given by:

θ (t) = 2 arccos d/2
l (0) . (10)

7 KEYSTROKE LOCALIZATION
The final step is to map the finger tapping to the virtual key

that is pressed by the user. When the user only uses a single finger
to perform tapping gestures, we can determine the identity of the
virtual key with very low cost. The identity can be determined by
calculating the location of the moving fingertip during the “locating
state”.

Locating the keystroke when the user uses multiple fingers to
perform tapping gesture is quite challenging. This is because that

more than one finger will move at the same time, even if the user
only intends to use a single finger to press the key. For example,
for most people, when they press their little finger, the ring finger
will move together at the same time. Therefore, both the video
and the ultrasound will detect multiple fingers moving at the same
time. To determine the exact finger that is used for pressing, we use
the depth information measured in Section 6.3. The finger used for
pressing the key always has larger bending angle than other moving
fingers. Therefore, we calculate the bending angle for all moving
fingers in the view, using the geometric model as shown in Figure
10(a). The finger with the largest bending angle is determined as
the pressing finger. Once we confirm which finger is the pressing
finger, we use the same methods as in the single-finger case to
locate the keystroke.

8 EXPERIMENTAL RESULTS
8.1 Implementation and Evaluation Setup

We implemented our system on both the Android and MacOS
platforms. On the Android platform, our implementation works as
an APP that allows the user to tap in the air in realtime on recent
Android devices, e.g., Samsung Galaxy S5 with Android 5.0 OS.
For the video capturing, due to the limitations in hardware, the
maximum video frame rate is 30 fps. To save the computational
resource, we set the video resolution to 352 × 288 and the average
video frame rate under this setting is 25 fps. We emit continuous
wave signal of A cos 2π f t , where A is the amplitude and f is the
frequency of the sound, which is in the range of 17 ∼ 22kHz. For
audio capturing, we chose a data segment size of 512 samples in our
implementation, which has time duration of 10.7ms when the sam-
pling rate is 48kHz. We implemented most signal processing and
computer vision processing algorithms as C/C++ functions using
Android NDK to achieve better efficiency. We used the opening li-
brary OpenCV C++ interfaces in computer vision processing when
implementing on the Android platform. On the MacOS platform,
we implemented the system using the camera on the MacBook and
streamed the audio signal using a smartphone. The MacOS-based
implementation uses C++. On the laptop, both the video and virtual
keyboard are displayed in real time on the screen. The user operates
in front of the lap top screen. To obtain the ground truth in our user
study, we also captured the user movement by a 120 fps camera. The
high speed video was processed offline and manually annotated to
serve as the ground truth. Due to the speaker placement (near the
ear, instead of facing forward) and SDK limitations on commercial
AR devices, we are unable to implement our system on existing
devices, such as the Hololens [22]. Instead, we use a cardboard VR
setup as shown in Figure 1(b) in our case study.

We conducted experiments on Samsung Galaxy S5 smartphone,
using its rear speaker, two microphones and the rear camera in both
office and home environments, as shown in Figure 11. Experiments
were conducted by eight users, who are graduate students with
the age of 22 ∼ 26 years. Five out of the eight users have prior
experiences on using VR/AR devices. The users interacted with
the phone using their bare hands behind the rear camera without
wearing any accessory. The performance evaluation process lasted
90 minutes with 18 sessions of five minutes. There is a five minutes
break between two sessions. If not specified, the smartphone was
fixed on a selfie stick during the experiments.

Depth Aware Finger Tapping on Virtual Displays MobiSys’18, June 10–15, 2018, Munich, Germany

Camera

Speaker

Microphone

Microphone

Selfie stick

(a) Selfie stick setup

OptiTrack

Retro-reflective
marker

(b) OptiTrack setup

Figure 11: Experimental setup

8.2 Evaluation Metrics
We evaluated our system in four aspects. First, we evaluated

the finger tapping detection accuracy using three metrics: True
Positive Rate (TPR), False Positive Rate (FPR), and False Negative
Rate (FNR). The TPR is the ratio of detected finger tappings to the
number of finger tappings performed by the user; The FPR is de-
fined as the ratio of falsely detected finger tappings to the number
of decisions made by our system while the user is not performing
a finger tapping; The FNR is the ratio of missed finger tappings
to the number of finger tappings performed by the user. In this
evaluation, we collected 2,000 finger tappings performed by eight
users using the smartphone. Second, we evaluated the impact of
video resolution on the performance of our system in real-time
system. Third, we evaluated the latency and power consumption
of our system, when the real-time system is running on a smart-
phone. Fourth, we performed two case studies: 1) DolphinBoard:
in-the-air text input and 2) DolphinPiano: AR piano based on the
finger bending angle. We evaluated the TPR of different users un-
der different environments and the feedback based on different
bending angles.

8.3 Finger Tapping Detection
Our system can robustly detect finger tappings with different tap-

ping depths. We evaluate FNR for finger tappings with different
depths. The ground truth depth distances are measured by Opti-
Track [28], a high-precision motion capture and 3D tracking system.
As shown in Figure 11(b), We place the retro-reflective marker on
the index finger of the volunteer to achieve 120 fps 3D trace of the
finger when they are performing the test. Figure 12(a) shows the
detection accuracy for different tapping depths. Since it is hard for
volunteers to control their fingers to move for such a small distance,
we only test on three different tapping depth bins. Our system
achieves 95.6%, 96.6%, and 98% TPR, for tapping depths of 0 ∼ 20,
20 ∼ 40, and 40 ∼ 60mm, respectively, while video based scheme
only achieves TPR of 58.6% for the 20mm case. The key advantage
of introducing the ultrasound is that it can reliably detect gentle
finger tappings with a depth of 0 ∼ 20mm. Based on the ground
truth captured by OptiTrack, our phase-based depth measurement
achieves an average movement distance error of 4.32mm (SD =
2.21mm) for 200 tappings.

Our system achieves an average FPR of 1.6% and FNR of 1.4%
for gentle finger tappings. We evaluate FPR/FNR for gentle finger
tappings with bending angle of 30 degrees. The single video camera
based finger tapping detection has FPR of 1.2% and FNR of 41.8%

0~20 20~40 40~60

 Depth distance (mm)
0

20

40

60

80

100

 T
ru

e
Po

si
tiv

e
R

at
e

(%
)

 Video+Audio
 Video

(a) Sensitivity for different tapping depths

 Time delay (millisecond)
0 50 100 150

 C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Latency reduction

Figure 12: Finger tapping detection accuracy

Frame resolution (w*h)
1280*720 800*480 720*480 352*288 176*144

Fr
am

e
ra

te
 (f

ps
)

5

10

15

20

25

30

Er
ro

r r
at

e
(%

)

0

2

4

6

8

10
Frame rate
Tapping input

(a) Frame rate and tapping input error rate
Frame resolution (w*h)

1280*720 800*480 720*480 352*288 176*144Po
w

er
 c

on
su

m
pt

io
n

(m
W

)

1400

1500

1600

1700

Er
ro

r r
at

e
(%

)

0

0.5

1

1.5

2

2.5
Power
Keystroke

(b) Power consumption and keystroke lo-
calization error rate

Figure 13: Impact of video resolution

for gentle finger tappings. The video-only scheme has much higher
FNR because it cannot reliably detect gentle finger tappings. On
the contrary, pure audio-based scheme has average FPR of 28.2%
and FNR of 2.4%. The higher FPR for audio based scheme is because
ultrasound often raises false alarms for other tappings of finger
motions, such as finger movements. By combining the video with
the audio, we take advantage of both of them to achieve low FPR
and FNR at the same time.

On average, the finger tapping detection latency of our system is
57.7ms smaller than the video-based schemes, which is equivalent to
two frames in the 30 fps camera. Figure 12(b) show the Cumulative
Distribution Function (CDF) of the interval between the time that
our system detects the tapping and that the video-based scheme
detects the tapping, for 500 finger tappings. For 80% of the in-
stances, our system can detect the finger tapping 33.5ms earlier
than video-based schemes, which is equivalent to one frame in
30 fps camera.

Based on experimental results, we choose a video resolution of 352×
288 in our Android implementation. Most mobile devices support
different video resolutions, from 1280 × 720 to 176 × 144. The video
resolution has different impact on various performance metrics,
including frame rate, energy consumption, keystroke localization
accuracy, and the tapping input FNR. A higher video resolution,
such as 1280 × 720, often leads to lower frame rate, due to the
hardware constraints of the video camera and the computational
cost for higher video resolution. As shown in Figure 13(a), our
Samsung Galaxy S5 can only support a video stream rate of 10 fps
when the resolution is 1280 × 720. Higher video resolution also
leads to higher energy consumption. We use Powertutor [47] to
measure the power consumption under different video resolutions
and the result is shown in Figure 13(b). We observe that there is
a sharp drop in power consumption for the lowest resolution of
176 × 144, due to the sharp decrease in the computational cost.

MobiSys’18, June 10–15, 2018, Munich, Germany Ke Sun et al.

(a) Audio thread

Down
conversion PVE

Tapping
detection Total

Time 6.455ms 0.315ms 0.036ms 6.806ms

(b) Video thread

Hand
detection

Fingertip
detection

Frame
playback Total

Time 22.931ms 2.540ms 14.593ms 40.064ms

(c) Control thread

Keystroke
localization

Virtual
key rendering Total

Time 0.562ms 10.322ms 10.884ms

Table 2: Processing time
CPU LCD Audio Total

Idle 30 ± 0.2mW / / 30 ± 0.2mW
Backlight 30 ± 0.2mW 894mW ± 2.3 / 924 ± 2.0mW
Video-only 140 ± 4.9mW 895 ± 2.2mW / 1035 ± 4.0mW
Our scheme 252 ± 12.6mW 900 ± 5.7mW 384 ± 2.7mW 1536 ± 11.0mW

Table 3: Power consumption

However, low resolution of 176 × 144 cannot support accurate
keystroke localization, as shown in Figure 13(b). The probability
that our system gives a wrong keystroke location raises from nearly
zero to 2.5%, when we decrease the resolution from 1280 × 720 to
176 × 144. Figure 13(a) shows the overall tapping input FNR, which
is defined as the ratio of missed and wrongly identified keys to the
total number of keys pressed. We observe that neither the highest
nor the lowest resolution has a low tapping input error rate. High
video resolution of 1280× 720 has FNR of 9.1% due to the low video
frame rate, which leads to higher latency in response. Low video
resolution of 176× 144 has FNR of 3.5% due to the higher error rate
in keystroke localization. Therefore, to strike a balance between
the latency and the keystroke localization error, we choose to use
video resolution of 352× 288, which gives a input error rate of 1.7%.

8.4 Latency and Power Consumption
Our system achieves a tapping response latency of 18.08ms on

commercial mobile phones. We measured the processing time for
our system on a Samsung Galaxy S5 with Qualcomm Snapdragon
2.5GHz quad-core CPU. Our implementation has three parallel
threads: the audio thread, the video thread, and the control thread.
The audio thread processes ultrasound signals with a segment size
of 512 data samples (with time duration of 10.7ms under 48kHz
sampling rate). The processing time for each stage of the audio
thread for one data segment is summarized in Table 2. We observe
that the latency for the audio process to detect a finger tapping is
just 6.806ms . The video process performs hand detection, fingertip
detection, and video playback. At the resolution of 352 × 288, the
processing latency is 40.06ms and our system achieves an average
frame rate of 24.96 fps. The control thread performs the keystroke
localization and renders the updated virtual keyboard. It has a
latency of 10.88ms . As these three threads run parallelly, the slowest
video thread is not in the critical path and we can use the result
of previous frames in the other two threads. Therefore, once the
audio thread detects the finger tapping, it can evoke the control
thread immediately and the total latency between keystroke and
rendering of the virtual keyboard is 6.81ms + 10.88ms = 17.69ms .

User Gender Age Hand Length Hand width
User1 Male 23 19.0cm 10cm
User2 Male 23 17.8cm 9.3cm
User3 Female 22 14.5cm 7.5cm
User4 Male 25 17.2cm 9.2cm
User5 Male 26 17.5cm 9.4cm
User6 Male 24 18.5cm 10.2cm
User7 Male 24 17.9cm 9.8cm
User8 Male 24 18.2cm 9.5cm

Table 4: Participants information
We use the Powertutor [47] to measure the power consumption

of our system on the Samsung Galaxy S5. To measure the power
consumption overhead of different individual components, we mea-
sured the average power consumption in 4 different states for 25
minutes with 5 sessions of 5 minutes: 1) idle, with the screen off, 2)
backlight, with the screen displaying, 3) video-only scheme, with
the video-based scheme on, 4) our system, with both the ultrasound
and video scheme on. As shown in Table 3, more than 68% of power
consumption comes from LCD and CPU which are essential for
traditional video-only virtual display applications. Compared to
the video-only scheme, the additional power consumptions intro-
duced by our scheme for CPU and Audio are 112mW and 384mW ,
respectively, which means more than 77% additional power con-
sumption comes from the speaker hardware. Overall, we measured
a significant power consumption overhead of 48.4% on commercial
smartphones caused by our scheme. One possible future research
direction could be further reducing the power consumption of the
audio system.

8.5 Case Study
We used our system to develop different applications in AR/VR

environments. In order to further evaluate the performance of
our system, we conducted two different case studies using real-
world settings. As our systems use both visual information and
sound reflections for target locating, just as Dolphins, we name the
applications as DolphinBoard and DolphinPiano.

8.5.1 DolphinBoard: In-the-air text input. In this case study, the
task of DolphinBoard is to enable text input by tapping-in-the-air
mechanism. This study aims to evaluate the detect error rate of
different users under different environments and the tapping speed.

User interface: Figure 14(a) shows the user interface of Dol-
phinBoard. Users move their finger in-the-air and locate the virtual
key on the virtual display to be tapped. The QWERTY virtual key-
board is rendered on the top of the screen with a size of 1320 × 528
pixels. We set the size of keys as 132 × 132 pixels for most of the
experiments.

Testing Participants:We invited eight graduate student volun-
teers to use our applications. We marked these users as User 1 ∼ 8.
All of them participated in the 90 minutes performance experiments
before the use case study. The evaluation of DolphinBoard lasted 20
minutes per person, where users are asked to type a 160-character
sentence for text input speed test. Note that a larger hand may gen-
erate a stronger echo of the ultrasound signal. Thus, we measured
the hand size of each participant as shown in Table 4.

Performance evaluation:DolphinBoard achieves finger tapping
detection error of less than 1.76% under three different use cases. To
evaluate the usability of DolphinBoard, we invited eight users to

Depth Aware Finger Tapping on Virtual Displays MobiSys’18, June 10–15, 2018, Munich, Germany

(a) DolphinBoard user interface

1 2 3 4 5 6 7 8

 Users
0

0.5

1

1.5

2

2.5

 F
al

se
 n

eg
at

iv
e

ra
te

 (%
)

 Fix by selfie stick
 Hold in hand
 Set on the head

(b) FNR of different use cases

1 2 3 4 5 6 7 8

 Users
0

0.5

1

1.5

2

2.5

3

3.5

 F
al

se
 n

eg
at

iv
e

ra
te

 (%
)

 Office with background music
 Cafe with speech noise
 Music from the same speaker

(c) FNR of different environments

1 2 3 4 5 6 7 8

 Users
0

4

8

12

16

 W
or

ds
 P

er
 M

in
ut

e
(w

or
ds

/m
in

)

 Single-finger
 Multi-finger
 Hololens

(d) Input speed for different systems

1 2 3 4 5 6 7 8

 Users
0

0.5

1

1.5

2

2.5

 F
al

se
 n

eg
at

iv
e

ra
te

 (%
) Deep tapping

 Gentle tapping

(e) FNR of different tapping angles

Technical complexity Accuracy Latency User friendliness

 U
se

r e
xp

er
ie

nc
e

sc
or

e

0

1

2

3

4

5

 DolphinBoard
 Hololens

(f) User experience

Figure 14: DolphinBoard: In-the-air text input evaluation

input text under three different use cases. The first use case is
to hold the smartphone in hand and type behind the phone. The
second use case is to fix the smartphone on a selfie stick so that
the phone is more stable than in the first use case. The third use
case is to put the smartphone in a cardboard VR set worn on the
head of the user as shown in Figure 1(b). Each of the users performs
500 taps under the three different user cases. As shown in Figure
14(b), the average FNR for tapping detection are 1.75%, 1.23%, and
2.03%, respectively. This shows that DolphinBoard is robust under
small interfering movements of the hands and head. The hand/head
movement interferences in use case 1 and 3 only introduce a small
increase in the FNR for less than 0.8% compared to the case that
the device is fixed.

DolphinBoard is robust to noises and achieves low FNR in three
different noisy environments. To evaluate the robustness of Dol-
phinBoard, we asked users to perform finger tapping in three differ-
ent noisy environments, including a cafe with 60dB speech noise,
an office with 65dB background music, and playing 65dB music
from the same speaker that is used for playing the ultrasound. In all
of these three environments, there are other people walking around.
As shown in Figure 14(c), the average FNR for finger tapping detec-
tion in the three different environments are 1.1%, 1.35%, and 2.48%,
respectively. Note that the ultrasound signals can be mixed with
other audible signals. Our system can support the use case that
users are using the speaker to play music while performing tapping
detection using the ultrasound. When music is played on the same
speaker used by DolphinBoard, the intensity of the ultrasound is
actually reduced due to the contention of the dynamical range on
the speaker. However, DolphinBoard still achieved a low FNR of
2.48% in this challenging scenario.

The text input speed of DolphinBoard is 12.18 (SD=0.85) WPM
and 13.1 (SD=1.2) WPM for single-finger and multi-finger inputs,
respectively. The text input speed was evaluated using the metrics
of Words Per Minute (WPM), which is defined as the number of
5-character words that the user can correctly enter for a duration
of one minute. As a reference, the typing speed on DolphinBoard is
about two times that on Hololens, on which the users achieve about
6.45 WPM on average as shown in Figure 14(d). The single-finger
input speed on DolphinBoard is limited by the finger tapping speed.
When we ask the users to tap continuously on the same key, the
average tapping speed is about 98 taps per minute, which converts
to about 19.6 WPM. While our method supports two-hand tracking,
users can only input text with a single hand due to the limited
viewing angle of mobile devices. As a result, multi-finger input
does not significantly increase the typing speed. The layout of the
QWERTY keyboard used in the current design of DolphinBoard
could also be a limitation of the text input speed. The users still need
to move their hands during typing, which limits the speed. With
a better design of a dynamic virtual keyboard, the typing speed
of DolphinBoard could be further increased. It is also possible to
use the depth information provided by DolphinBoard to activate
different virtual keys. As shown in Figure 14(e), the average FNR
for DolphinBoard to detect gentle tappings and deep tappings are
0.5% and 1.93%, respectively. Therefore, DolphinBoard can reliably
detect different types of tappings and use this information to build
better keyboard layouts. For example, the gentle finger tappings
could be used for inputting the lower-case letters and the deep
finger tappings could be used for inputting the capitalized letters.

User experience evaluation: We evaluated the user experi-
ence using 10 participants via questionnaire surveys, including 1)

MobiSys’18, June 10–15, 2018, Munich, Germany Ke Sun et al.

(a) DolphinPiano user interface

1 2 3 4 5 6 7 8

 Users
60

65

70

75

80

85

90

95

 B
ea

ts
 P

er
 M

in
ut

e
(b

ea
ts

/m
in

)

 Single-finger
 Multi-finger

(b) Tempo for DolphinPiano

1 2 3 4 5 6 7 8

 Users
85

87

89

91

93

95

97

99

 T
ru

e
Po

si
tiv

e
R

at
e

(%
)

 0~20o

 20~40o

 40~60o

 60~90o

(c) TPR of different feedback

1 2 3 4 5 6 7 8

 Users
1

2

3

4

5

 U
se

r e
xp

er
ie

nc
e

sc
or

e

 Bending angles feedback
 Bending angles sensitivity

(d) User experience

Figure 15: DolphinPiano: AR piano evaluation

technical complexity, 2) accuracy, 3) latency and 4) user friendli-
ness (5=strongly positive, 1=strongly negative). Users were asked
to type using DolphinBoard and Hololens for 20 minutes per per-
son. Figure 14(f) shows the results. For the technical complexity,
some participants have some negative evaluation, this is mainly
because DolphinBoard only needs user to move their finger to the
expected location instead of moving their head like Hololens. For
the accuracy, most of the participants hold positive/strongly posi-
tive attitudes because DolphinBoard is able to detect small finger
tappings. For the latency, most of the people have positive/strongly
positive evaluation since ultrasound-assisted methods shorten the
detecting duration effectively. For the user friendliness, the tapping-
in-the-air mechanisms are acceptable for most of users. In addition,
most participants (9/10) are in favor of the idea of different tapping
depths to input lower and upper case letters.

8.5.2 DolphinPiano: AR piano based on the finger bending angle.
This study aims at providing feedback based on different bending
angles of finger tappings. In this case study, we develop Dolphin-
Piano, which enables users to play the piano in-the-air. For physical
pianos, the loudness of the notes depends on the strength of the
keystroke: the greater the velocity of a keystroke, the greater the
force of the hammer hitting the strings, and the louder the sound of
the note produced. Since our system is able to measure the micro
movement of the finger, DolphinPiano simulates different levels of
force being applied to keys based on the bending angle.

User interface:As shown in Figure 15(a), a piano keyboard with
one octave is rendered on the screen. This keyboard is translucent so
that users can locate their fingertips to the virtual key on the screen.
White keys and black keys have size of 150 × 640 and 100 × 320
in pixels, respectively. When users press the key, the application
plays the corresponding note with different volume based on the
finger bending angle.

Testing Participants: Eight people participated in case study 1
were also invited to use the DolphinPiano application. Since they
were familiar with DolphinBoard, they were asked to play a simple
piece of music (Jingle Bells) without any training. Each person uses
our DolphinPiano application for 20 minutes.

Performance evaluation: The tempo of DolphinPiano achieves
75.0 (SD=3.88) BPM (beats per minute) and 79.3 (SD=5.31) BPM for
single-finger and multi-finger inputs, respectively. To evaluate the
music tempo, eight users were asked to play music on Dolphin-
Piano application as fast as possible. As shown in Figure 15(b),
tapping on DolphinPiano is faster than on DolphinBoard, this is
mainly because that the keys in DolphinPiano are larger than those
in text input which means shorter movement time according to
Fitts’ Law [19].

DolphinPiano provides accurate feedback for the bending angle
of fingers. To evaluate the accuracy of bending angle feedback, we
asked the participants to play the piano with different bending
angles. Four levels of bending angles were used in the experiement,
i.e., 0 ∼ 20, 20 ∼ 40, 40 ∼ 60, 60 ∼ 90 degrees. Participants did not
know the ground truth of their bending angles, they could only
adjust their movement by the feedback of DolphinPiano. As shown
in 15(c), DolphinPiano achieved an average accuracy of 95.4%, 93.2%,
93.8%, and 97.4% TPR for different bending angles, respectively.
Participants had a good grasp of bending angle feedback after a
short training period.

User experience evaluation: We evaluated the user experi-
ence of eight participants via the questionnaire surveys, including
1) feedback accuracy and 2) angle sensitivity (5=strongly positive,
1=strongly negative). Figure 15(d) shows the results. All the par-
ticipants were positive to bending angle feedback. With the help
of bending angle feedback, they could play just like on a physical
keyboard. For bending angle sensitivity, they were surprised that
DolphinPiano could measure the bending angle by using one cam-
era on the mobile devices. Although there was no tactile feedback,
they could play smoothly with the help of different levels of audio
and visual feedbacks.

9 CONCLUSIONS
In this paper, we make three key contributions. First, we propose

combining ultrasound sensing information and vision information
to achieve fine-grained bending angle measurements for in-air
finger tappings. Second, we design a tapping-in-the-air scheme
with high accuracy and low latency. Third, we implemented and
evaluated our system using commercial smartphones without any
hardware modification. Our experimental results show that our
system achieves high accuracy, low latency and provides feedback
based on different bending angles of finger tappings. One limitation
of our solution is that its audio system incurs considerable overhead
in power consumption. One possible solution for this is to design
low-power speakers that are specialized for emitting ultrasounds.

ACKNOWLEDGMENTS
Wewould like to thank our shepherd Yuvraj Agarwal and anony-

mous reviewers for their valuable comments. This work is partially
supported by National Natural Science Foundation of China under
Grant Numbers 61472185, 61472184, 61373129, 61502229, 61672353,
and 61472252, the National Science Foundation under Grant Num-
bers CNS-1421407, Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization, and the Jiangsu High-level
Innovation and Entrepreneurship (Shuangchuang) Program.

Depth Aware Finger Tapping on Virtual Displays MobiSys’18, June 10–15, 2018, Munich, Germany

REFERENCES
[1] Heba Abdelnasser, Moustafa Youssef, and Khaled A Harras. 2015. WiGest: A

ubiquitous WiFi-based gesture recognition system. In Proceedings of IEEE INFO-
COM.

[2] C Albitar, P Graebling, and C Doignon. 2007. Robust Structured Light Coding for
3D Reconstruction. In Proceedings of IEEE ICCV.

[3] Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad Shahzad. 2015. Keystroke
Recognition Using WiFi Signals. In Proceedings of ACM MobiCom.

[4] Amazon. 2017. Alexa. https://developer.amazon.com/alexa. (2017).
[5] Gunilla Borgefors. 1986. Distance transformations in digital images. Computer

Vision Graphics & Image Processing (1986).
[6] Bo Chen, Vivek Yenamandra, and Kannan Srinivasan. 2015. Tracking Keystrokes

Using Wireless Signals. In Proceedings of ACM MobiSys.
[7] Ke-Yu Chen, Daniel Ashbrook, Mayank Goel, Sung-Hyuck Lee, and Shwetak

Patel. 2014. AirLink: sharing files between multiple devices using in-air gestures.
In Proceedings of ACM UbiComp.

[8] Xiang Anthony Chen, Julia Schwarz, Chris Harrison, Jennifer Mankoff, and
Scott E. Hudson. 2014. Air+touch:interweaving touch & in-air gestures. In
Proceedings of ACM UIST.

[9] Patricia Ivette Cornelio Martinez, Silvana De Pirro, Chi Thanh Vi, and Sriram
Subramanian. 2017. Agency in mid-air interfaces. In Proceedings of ACM CHI.

[10] Yan Cui, Sebastian Schuon, Derek Chan, Sebastian Thrun, and Christian Theobalt.
2010. 3D shape scanning with a time-of-flight camera. In Proceedings of IEEE
CVPR.

[11] Google. 2016. Google Project Soli. https://www.google.com/atap/project-soli/.
(2016).

[12] Claire C Gordon, Cynthia L Blackwell, Bruce Bradtmiller, Joseph L Parham,
Jennifer Hotzman, Stephen P Paquette, Brian D Corner, and Belva M Hodge.
1989. 2010 Anthropometric Survey of U.S. Marine Corps Personnel: Methods and
Summary Statistics. Anthropometric Survey of U.s.army Personnel Methods and
Summary Statistics (1989).

[13] Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. 2012. Soundwave:
using the doppler effect to sense gestures. In Proceedings of ACM CHI.

[14] Masakazu Higuchi and Takashi Komuro. 2015. Multi-finger AR Typing Interface
for Mobile Devices Using High-Speed Hand Motion Recognition. In Proceedings
of ACM CHI.

[15] Intel. 2017. Intel Realsense. http://www.intel.com/content/www/us/en/architecture-
and-technology/realsense-overview.html. (2017).

[16] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. 2014. Bringing gesture
recognition to all devices. In Proceedings of Usenix NSDI.

[17] Kourosh Khoshelham. 2011. Accuracy analysis of kinect depth data. In ISPRS
workshop Laser Scanning.

[18] Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco Gruteser.
2015. Snooping Keystrokes with mm-level Audio Ranging on a Single Phone. In
Proceedings of ACM MobiCom.

[19] I. Scott Mackenzie. 1992. Fitts’ Law as a Research and Design Tool in Human-
Computer Interaction. Human-Computer Interaction (1992).

[20] PedroMelgarejo, Xinyu Zhang, Parameswaran Ramanathan, and David Chu. 2014.
Leveraging directional antenna capabilities for fine-grained gesture recognition.
In Proceedings of ACM UbiComp.

[21] Microsoft. 2014. Microsoft Kinect. http://www.microsoft.com/en-
us/kinectforwindows/. (2014).

[22] Microsoft. 2016. Microsoft Hololens. http://www.microsoft.com/microsoft-
hololens/en-us. (2016).

[23] Robert B Miller. 1968. Response time in man-computer conversational transac-
tions. In Proceedings of ACM AFIPS.

[24] Mark R Mine, Frederick P Brooks Jr, and Carlo H Sequin. 1997. Moving ob-
jects in space: exploiting proprioception in virtual-environment interaction. In
Proceedings of ACM SIGGRAPH.

[25] Leap Motion. 2015. Leap Motion. https://www.leapmotion.com/. (2015).
[26] Taichi Murase, Atsunori Moteki, Noriaki Ozawa, Nobuyuki Hara, Takehiro Nakai,

and Katsuhito Fujimoto. 2011. Gesture keyboard requiring only one camera. In
Proceedings of ACM UIST.

[27] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota.
2016. FingerIO: Using Active Sonar for Fine-Grained Finger Tracking. In Proceed-
ings of ACM CHI.

[28] OptiTrack. 2018. OptiTrack. http://www.optitrack.com. (2018).
[29] Nobuyuki Otsu. 1975. A threshold selection method from gray-level histograms.

Automatica (1975).
[30] S. L. Phung, A. Bouzerdoum, and D. Chai. 2005. Skin segmentation using color

pixel classification: analysis and comparison. IEEE Transactions on Pattern Analy-
sis & Machine Intelligence (2005).

[31] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-
home gesture recognition usingwireless signals. In Proceedings of ACMMobiCom.

[32] Rajesh PN Rao. 2013. Brain-computer interfacing: an introduction. Cambridge
University Press.

[33] Anthony Santella, Maneesh Agrawala, Doug DeCarlo, David Salesin, and Michael
Cohen. 2006. Gaze-based interaction for semi-automatic photo cropping. In
Proceedings of ACM CHI.

[34] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. 2015. Kinect range
sensing: Structured-light versus Time-of-Flight Kinect âŸĘ. Computer Vision and
Image Understanding (2015).

[35] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem
Keskin, and Otmar Hilliges. 2014. In-air gestures around unmodified mobile
devices. In Proceedings of ACM UIST.

[36] Jue Wang, Deepak Vasisht, and Dina Katabi. 2014. RF-IDraw: virtual touch screen
in the air using RF signals. In Proceedings of ACM SIGCOMM.

[37] Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiquitous
keyboard for small mobile devices: harnessing multipath fading for fine-grained
keystroke localization. In Proceedings of ACM MobiSys.

[38] Wei Wang, Alex X. Liu, and Ke Sun. 2016. Device-free gesture tracking using
acoustic signals. In Proceedings of ACM MobiCom.

[39] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo Liu.
2014. E-eyes: In-home Device-free Activity Identification Using Fine-grained
WiFi Signatures. In Proceedings of ACM MobiCom.

[40] Teng Wei and Xinyu Zhang. 2015. mTrack: High-Precision Passive Tracking
Using Millimeter Wave Radios. In Proceedings of ACM MobiCom.

[41] FrankWeichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler. 2013.
Analysis of the accuracy and robustness of the leap motion controller. Sensors
(2013).

[42] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun, and Yuanchun Shi. 2015.
ATK: Enabling Ten-Finger Freehand Typing in Air Based on 3D Hand Tracking
Data. In Proceedings of ACM UIST.

[43] Yafeng Yin, Qun Li, Lei Xie, Shanhe Yi, Ed Novak, and Sanglu Lu. 2016. CamK: a
Camera-based Keyboard for Small Mobile Devices. In Proceedings of IEEE INFO-
COM.

[44] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang Mao. 2017.
Strata: Fine-Grained Acoustic-based Device-Free Tracking. In Proceedings of ACM
Mobisys.

[45] Chi Zhang, Josh Tabor, Jialiang Zhang, and Xinyu Zhang. 2015. Extending Mobile
Interaction Through Near-Field Visible Light Sensing. In Proceedings of ACM
MobiCom.

[46] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. DolphinAttack: Inaudible voice commands. In Proceedings of
ACM CCS.

[47] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick,
Zhuoqing Morley Mao, and Lei Yang. 2010. Accurate online power estimation
and automatic battery behavior based power model generation for smartphones.
In Proceedings of IEEE CODES+ISSS.

[48] Chenyin Zhao and Songqing Fan. 2002. Measurement of Fingers. Progress of
Anatomical Sciences (2002).

	Abstract
	1 Introduction
	2 Related Work
	3 System overview
	4 Fingertips localization
	4.1 Adaptive Skin Segmentation
	4.2 Hand Detection
	4.3 Fingertip Detection

	5 Depth Measurement
	6 Finger Tapping Detection
	6.1 Finger Motion Pattern
	6.2 Finger Tapping Detection
	6.3 Determining the Depth of Finger Tapping

	7 Keystroke Localization
	8 Experimental Results
	8.1 Implementation and Evaluation Setup
	8.2 Evaluation Metrics
	8.3 Finger Tapping Detection
	8.4 Latency and Power Consumption
	8.5 Case Study

	9 Conclusions
	References

