

Depth Aware Finger Tapping on Virtual Display

Ke Sun[†], Wei Wang[†], Alex X.Liu^{†‡}, Haipeng Dai[†] Nanjing University[†], Michigan State University[‡]

Mobisys'18 June 13, 2018

Motivation

Traditional tapping-based interaction:

- Require physical devices
- Limit the freedom of user hands

Motivation

Tapping-in-the-air:

- Hands are free to interact with other objects
- Depth measurements provide different levels feedback

Limitation of Prior Arts

Customized depth-cameras

- Low accuracy: Centimeter-level accuracy (without different levels feedback)
- High latency:
 Low frame rate and high computational requirements

Problem Statement

Can we suppport tapping-in-the-air without depth-cameras?

and meet these design goals

- High accuracy (mm-level)
- Low latency (< 20 ms)
- Different levels feedback (finger bending angle)
- Low computational cost (works on mobile devices)

Basic Idea

Dolphin navigation:

 ${\sf Ultrasound} + {\sf Vision}$

• Use ultrasound based sensing, along with one COTS mono-camera, to enable 3D tracking of user fingers with high frame rate.

Basic Idea

• Use ultrasound based sensing, along with one COTS mono-camera, to enable 3D tracking of user fingers with high frame rate.

Ultrasound

High sampling rate (48 kHz) Sensitivity to the depth direction Only 1D information

Mono-camera

Low frame per second (30 fps) Accurate 2D information

System Architecture

Fingertip Localization

Fingertip Localization

(a) Input frame

(b) Binary image (c) Distance transform (d) Fingertips image

Light-weight computer vision algorithm to locate the fingertips in 2D

- Adaptive Skin Segmentation: Otsu's method calculates the optimal threshold
- Hand detection Find the centroid of the palm (Distance Transform)
- Fingertip Detection for tapping gesture Extreme-points-based scheme

Ultrasound Signal Phase Extraction

Ultrasound Signal Phase Extraction

- Phase-based distance measurement
 - Measure phase changes caused by the movement
 - ullet 16 single frequencies (17 \sim 22 kHz) linear regression

Challenge:

- Phase changes caused by the finger movements is much smaller.
- Multipath interference in finger movements is much more significant.

Ultrasound Signal Phase Extraction

Peak and Valley Estimation

- Find the peak and valley
 - Avoid the error-prone step of static vector estimation
- Exclude the fake extreme points:
 - "FingerInterval": the magnitude gap of the finger
 - "SpeedInterval": the speed of the finger
- Future: use modulated signal to locate the absolute distance and exclude other distance dynamic multipath

Tapping Detection and Tapping Depth Measurement

Finger Motion State

- "Moving state"-Moves their finger to the key
 - Audio: Difficult to build the model
 - Video: Easy to track the fingers
- "Locating state"-Keeps their finger on the target key position briefly
 - Video: Difficult to perceive
 - Audio: Easy to detect the short pause
- "Tapping state"-"Tapping down state" & "Tapping up state"
 - Video: Difficult to measure
 - Audio: Easy to measure the depth information

Finger Motion Pattern

- Tapping a non-neighboring key
 - "Moving state" -> "Locating state" -> "Tapping state"
- Tapping a neighboring key
 - "Locating state" -> "Tapping state"
- Tapping the same key
 - "Tapping state"

Finger Tapping Detection

- Audio to detect that the "tapping state"
 - Utilize the high sampling rate (48 kHz) -> Low latency
 - Utilize the sensitivity to the depth direction -> High accuracy
 - Use only 1D information -> High false positive rates
- Video to look back to the previous frames
 - Measure the duration of "Moving state" and "Locating state"
 - Check the state machine to remove false alarms—> High robustness
 - Measure the depth of finger tapping
- 8 Keystroke localization
 - Calculate the location of the fingertip during the "Locating state"
 - Determine the fingertip with the largest bending angle
 - 1-NN determine the pressed virtual key

Measure the depth of finger tapping

- Measure the bending angle of the finger
 - Deep finger tapping: camera-based model

• Gentle finger tapping: ultrasound-based model

Implementation

Implemented on Android with NDK

Video: OpenCV C++

• Audio: C++

Video parameters used

24 frame per second 355×288 resolution

Audio parameters used

48 kHz sampling rate

512 samples per segment (10.7 ms)

16 single frequencies ($17 \sim 22$ kHz)

Evaluation Setup

Three different use cases:

- Fix by selfie stick
- Hold in hand
- Set on the head by cardboard VR

Depth ground truth:

OptiTrack (4 depth cameras + 120 fps)

Result – Accuracy

- Average movement distance error of 4.32mm (SD = 2.21mm)
- \bullet Average 98.4% accuracy with FPR of 1.6% and FNR of 1.4%
- Improve the gentle finger tappings accuracy from 58.2% to 97.6%

40.064ms

Result – Latency

(a) Audio thread

	conversion	PVE	detection	Total
Time	6.455ms	0.315ms	0.036ms	6.806ms
	(b) Video thre	ead	
		Fingertip detection	Frame playback	Total

(c) Control thread

22.931ms

	Keystroke localization	Virtual key rendering	Total
Time	0.562ms	10.322ms	10.884ms

2.540ms

14.593ms

• Average response latency of 18.08ms on commercial mobile phones

Time

 Average response latency is 57.7ms smaller than the video-based schemes

Result – Case study

- 12.18 (SD=0.85) WPM for single-finger inputs
- 13.1 (SD=1.2) WPM for multi-finger inputs
- ullet Average 95.0% TPR for 4-level feedbacks

Result – Power consumption

	CPU	LCD	Audio	Total
ldle	$30 \pm 0.2 mW$	/	/	$30 \pm 0.2 mW$
Backlight	$30 \pm 0.2 mW$	$894mW \pm 2.3$	/	$924 \pm 2.0 mW$
Video-only	$140 \pm 4.9 mW$	$895 \pm 2.2 mW$	/	$1035 \pm 4.0 mW$
Our scheme	$252 \pm 12.6 mW$	$900 \pm 5.7 mW$	$384 \pm 2.7 mW$	$1536 \pm 11.0 mW$

- Significant power consumption overhead of 48.4%
- ullet More than 77% additional power consumption comes from speaker
- Future: reduce the power consumption of the audio system

Conclusion

Combining ultrasound sensing information and vision information to achieve tapping-in-the-air

Our system achieves design goals

- High accuracy
 4.32 mm distance error, 98.4% accuray
- Low latency 18.08 ms, 4x faster than video-based scheme
- Different levels feedback
 based on different bending angles of finger tappings
- Low computational cost works on commercial mobile devices

Q&A

Thank you! Question?

