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Abstract—Machine Learning (ML) has been instrumental in
enabling joint transceiver optimization by merging all physical
layer blocks of the end-to-end wireless communication systems.
Although there have been a number of adversarial attacks on
ML-based wireless systems, the existing methods do not provide
a comprehensive view including multi-modality of the source
data, common physical layer protocols, and wireless domain
constraints. This paper proposes Magmaw, a novel wireless attack
methodology capable of generating universal adversarial pertur-
bations for any multimodal signal transmitted over a wireless
channel. We further introduce new objectives for adversarial
attacks on downstream applications. We adopt the widely-used
defenses to verify the resilience of Magmaw. For proof-of-concept
evaluation, we build a real-time wireless attack platform using a
software-defined radio system. Experimental results demonstrate
that Magmaw causes significant performance degradation even in
the presence of strong defense mechanisms. Furthermore, we val-
idate the performance of Magmaw in two case studies: encrypted
communication channel and channel modality-based ML model.
Our code is available at https://github.com/juc023/Magmaw.

I. INTRODUCTION

Next-generation (NextG) networks promise to support
ultra-reliable and low-latency communication for rapidly
evolving wireless devices [28]. Emerging networks are thus
challenged to establish new features (e.g., adaptive coding and
enhanced modulation) to overcome rapidly changing channel
conditions and to achieve more efficient use of spectrum [62],
[101]. Machine Learning (ML) overcomes this barrier by
revolutionizing the entire wireless network protocol stack [66].

Recent research [18] introduces joint source-channel cod-
ing (JSCC), an end-to-end wireless communication system
leveraging deep neural networks (DNNs) for both transmitter
and receiver. This ML approach jointly optimizes source and
channel coding in a cross-layer framework to handle diverse
and challenging channel conditions. To effectively cope with
the multipath fading effects, the JSCC-encoded data can be
further modulated into continuous signal waveforms through
orthogonal frequency division multiplexing (OFDM) [98]. The
DNN models for JSCC are tailored to specific modalities (e.g.,
texts, images, etc.), so as to convey semantic information more
accurately than traditional communication systems (see §II-B).
The advantages of such ML-based communication systems are
increasingly recognized by standardization bodies such as the
Third Generation Partnership Project (3GPP) [83]. Industry
leaders, such as Apple [69], Huawei [87], Nokia Bell Labs [6],
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Fig. 1: High-level view of Magmaw.

Qualcomm [63], and ZTE [50] are also investigating AI-native
6G communications. NVIDIA has established an ML-based,
GPU-accelerated communication signal processing framework
[38] for 6G applications. These developments underscore the
growing consensus that ML-based wireless communications
will play a crucial role in shaping the future of 6G technology.

Unfortunately, ML is vulnerable to adversarial attacks [15],
[76], where small, imperceptible changes to input can yield
substantial changes in the model’s output. The susceptibility
of the models to adversarial examples raises serious concerns
for the safety of ML adoption in NextG.

Traditional jamming or overshadowing attacks [29], [75],
[92], [96] have been dedicated to developing a malicious RF
device to disrupt legitimate wireless communications. How-
ever, these approaches typically rely on high-power transmis-
sions to cause large-scale disruptions in the spectrum, leading
spectrum owners to respond swiftly. Highly effective attacks
that use low signal strengths are missing in this literature.

There have been recent works on small signal manipula-
tions designed to target ML-based wireless systems [12], [39],
[47], [54], [59]. However, they make unrealistic assumptions
about the attacker’s capabilities. For example, even though
JSCC has a modality-specific structure, they assume that only
a single modality (e.g., one-hot vector message or image) is
wirelessly communicated. They also assume that the adversary
knows which modality is sent by the transmitter. In practice,
the above assumptions are not valid for the following reasons:
1) the transmitter typically incorporates data from all modali-
ties into the data blocks and then sends them to the receiver; 2)
if the adversary wants to recognize the modality of the signal,
it needs to have access to the target ML model that carries
out JSCC, and this is not always feasible, and 3) even if the
adversary can detect the modality, high latency occurs until
perturbations are generated and added to the victim signal.

We propose Magmaw, a new hardware-driven wireless at-
tack framework that creates universal adversarial perturbations
(UAPs) to subvert ML-based wireless systems. We show for
the first time that modulated multimodal data can be perturbed
by adversaries, resulting in failure to restore the original data
as well as subversion of downstream services. We consider
examples of downstream services such as video classification
(VC), which analyzes human activity from video, and audio-
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visual event recognition (AVE) which predicts the event label
based on representations over multiple input modalities. Mag-
maw can cause significant disruptions or threaten user safety
in quality-sensitive applications, e.g., remote surgery [3] and
autonomous driving [36], as illustrated in Figure 1. Emerging
applications (e.g., XR [48]) would suffer even more from the
corruption of multiple input modalities.

Magmaw must address four main design challenges.
Firstly, we assume that the adversary lacks prior knowledge
about the data’s modality and the exact channel model. Ad-
ditionally, the attacker’s ability to adjust its transmit signal
pattern effectively depends on knowing the channel matrix
between the sender and receiver (Ht). However, since Ht varies
due to factors like link distance, mobility, and environment,
not having this information makes crafting an effective attack
challenging. We solve the above challenges by designing a per-
turbation generator model (PGM) trained to create input- and
channel-agnostic perturbations on surrogate wireless models.
We adopt an ensemble learning approach that utilizes surrogate
multimodal JSCC models to learn UAPs.

Secondly, previous attacks [12], [39], [47], [54], [59] do
not consider that the input signal can be adjusted by physical
layer protocols (see §II-C). They only focus on the scenarios
where the adversary has prior knowledge of the protocol’s
full setup. In a practical scenario, the attacker does not know
the constellation mapping or how the OFDM system assigns
the complex symbols to multiple subcarriers. It is possible
to design an attacker that recognizes the protocol from the
transmitted signals [72]. However, since wireless protocols
change rapidly depending on the channel state, the analyzed
output quickly becomes obsolete. A protocol-agnostic attack
is required. We address this challenge by incorporating mul-
tiple controllable parameters inside the ensemble learning to
optimize perturbations generalizable across all modulated data.

Thirdly, an adversarial wireless device may not be pre-
cisely synchronized with a legitimate transmitter or receiver
in the time or frequency domain, reducing the effectiveness of
perturbations. We address de-synchronization issues between
the adversarial device and the legitimate transmitter/receiver
using our offline training procedure. Specifically, we train the
PGM using time shift and phase rotation functions, ensuring
that UAPs remain effective even with varying offsets.

Finally, previous studies [12], [54] are vulnerable to adap-
tive defenses. For instance, a perturbation detector [93] can
exploit traces of perturbations to predict whether the input is
perturbed. This is because their perturbations are overly rigid
and lacking in variability due to overfitting [34]. To craft robust
and diverse perturbations, we introduce a discriminator and
diversity loss to regularize the learning process explicitly.

After integrating the above solutions, we implement Mag-
maw on the software-defined radio platform and validate its
attack feasibility, as shown in Appendix A. Our experiments
show that Magmaw degrades the Peak Signal-to-Noise Ratio
(PSNR) by up to 8.04dB and 8.29dB for image and video
transmission, respectively, where PSNR is a representative
image quality score. For speech transmission, Magmaw pre-
vents receivers from recognizing the speech content, increasing
the mean square error (MSE) by up to 3.91× compared to
baseline attacks. Furthermore, Magmaw reduces the bilingual

evaluation understudy (BLEU) score to 0.338 points for text
transmission, indicating that the received text exhibits signif-
icant semantic errors and grammatical inaccuracies. Notably,
we achieve up to 91.2% attack success rate on the downstream
tasks. In our case study, we establish an encryption-based
secure image transmission and prove that Magmaw leads to a
reduction of up to 5.88dB in PSNR. We also evaluate Magmaw
with channel modality-based ML models. Magmaw introduces
up to 2.2× more error in the ML results than the baseline.

In summary, we make the following contributions:
• We introduce Magmaw, a novel wireless attack frame-

work implemented over software-defined radio against
ML-based multimodal communication systems and
underlying downstream applications.

• We adopt an ensemble learning approach on a set
of surrogate JSCC models to craft our UAP input-
and protocol-agnostic, i.e., oblivious to the modality,
constellation, coding rate, OFDM specifications, and
channel conditions.

• We evaluate Magmaw against various defense tech-
niques, including adaptive ones. Extensive results from
case studies further show Magmaw’s efficacy.

II. BACKGROUND

A. Wireless Communication Systems

Current communication standards (e.g., 4G LTE [2], IEEE
802.11 family [40], 5G NR [49]) follow separate source and
channel coding designs and require independent optimization
of each component. The source encoder transforms the source
data into the embedded source bits. The channel encoder adds
redundancy to the transmitted signal, allowing the receiver to
correct errors caused by noise. However, these conventional
systems suffer from dramatic performance degradation due to
the cliff effect where the receiver’s error correction algorithm
cannot recover the transmitted data if channel conditions are
worse than a certain threshold [18].

ML-driven wireless systems aim to train a robust JSCC
encoder and decoder on wireless channels infused with channel
conditions similar to the physical world. The JSCC encoder
directly maps the source to complex-valued symbols, and the
JSCC decoder recovers its estimate directly from the noisy
channel output. To adopt the widely used wireless standards,
the JSCC models can be concatenated with OFDM to increase
the spectral efficiency and reduce the multipath channel ef-
fects [98]. Since multipath fading channels and OFDM blocks
can be represented as differentiable layers, ML-based wireless
systems are trained end-to-end. As such, JSCC can be built
without modifying standard radio hardware (e.g., field test 6G
with JSCC on 4G LTE [84]). Furthermore, ML-based wireless
communication can significantly save channel bandwidth costs
compared to conventional systems while achieving the same
end-to-end wireless transmission performance [99].

B. Modality-Specific JSCC Models

Existing JSCC systems [82], [88], [90], [98] adopt
modality-specific structures, with each modality requiring a
specialized approach for accurate symbol recovery at the
receiver. We consider four state-of-the-art JSCC models for
image [98], video [82], speech [88], and text transmission [90].
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Fig. 2: The modality-specific JSCC model for end-to-end wireless communication system.

Figure 2 depicts the commonly used structures for each
modality. The image JSCC is trained to minimize distortion
on a frame-by-frame basis. The video JSCC leverages spa-
tiotemporal similarities between successive frames to remove
the redundancy. To achieve this, the video JSCC adopts the
temporal coding structure σ, which clusters each consecutive
sequence of pictures into a group of pictures (GOP). Each
frame within the GOP is entered into the video JSCC in coding
order rather than display order. This means that the video
JSCC encoder compresses frames in a specific order. For a
total of P frames included in the GOP, the coding order of
each frame is determined by the mapping function mσ(t),
where 1 ≤ mσ(t) ≤ P . On the other hand, speech signals
contain speaker characteristics such as speech rate and tone.
The attention mechanism [88] is utilized for speech JSCC to
identify the essential features to help accurately recover speech
signals at the receiver. The text JSCC is designed to precisely
encode context information and cope with semantic distortion
based on Transformers [81]. The text features recovered by the
receiver are decoded into the text sentence through a greedy
decoder [85]. A cross-entropy loss [46] is used to understand
semantic meaning while maximizing system capacity.

C. Physical Layer Protocols

Modulation. Wireless standards commonly adopt QPSK, 16-
QAM, and 64-QAM to map bits to complex symbols [89].
Therefore, the JSCC-encoded data are mapped to elements in
a two-dimensional finite constellation diagram. An adaptive
modulation scheme can change the modulation type to balance
reliability and spectral efficiency. For example, [1] changes the
modulation based on the threshold of the channel state to meet
the bit error rate (BER) requirement.

OFDM. To achieve high spectral efficiency, the OFDM trans-
mitter may assign modulated symbols arbitrarily to the sub-
carriers rather than in a fixed order. Therefore, each subcarrier
carries symbol vectors with a different distribution.

Coding Rate. Adaptive encoding is essential to guarantee the
reliability of wireless communications [91]. The JSCC encoder
estimates the available bandwidth based on the channel state
and employs adaptive algorithms to choose an optimal coding
rate for efficient real-time streaming.

III. RELATED WORK

A. Conventional Wireless Attacks

Jamming Attacks. RF jamming transmits radio signals indis-
criminately across a range of frequencies, causing interference
and disrupting communication. Jamming can be broadly cate-
gorized as active jamming and reactive jamming [61], [92]. Ac-
tive jamming continuously emits powerful interference signals,
but its continuous operation leaves detectable traces, making it

vulnerable to defensive techniques [92]. Reactive jamming [51]
adjusts its jamming behavior according to observed signals in
the environment. It remains silent when the channel is idle
but initiates high-power signal transmission upon detecting
activity on the channel. The drawback of these approaches
is that spectrum owners may promptly detect the presence of
an attack and respond accordingly.

Overshadowing Attacks. Cellular networks are vulnerable to
overshadowing attacks [86]. Recent works [29], [96] can force
the victims to receive the attacker’s symbols/subframes by
sending high-powered signals to a base station. However, the
adversary must have the capability to receive and decode the
messages transmitted by the victim. These attacks typically
require signal strengths ranging from -3.4dB to +3dB over
the benign signal [29]. Since the adversary’s signal strength is
comparable to or even stronger than the legitimate signals, it
becomes easier for the legitimate nodes to identify the attack.

B. Adversarial Attacks on Computer Vision Domains

Adversarial ML has been studied to analyze the robustness
of the ML model across multiple areas, such as image clas-
sification [21], [64], speech recognition [5], human activity
recognition [19], [25], neural video compression [23], [24],
etc. Most studies provide an attacker with the capabilities to
perform a man-in-the-middle attack where he/she intercepts
data in the middle and then injects small perturbations. How-
ever, these are not physically feasible and only expose theo-
retical vulnerabilities. As the demand for physically feasible
attacks grows, recent studies [41], [55], [70] define practical
methodologies so that attacks can be realized in the real world.
SLAP [55] applies a projector to superimpose light onto an
object, causing the model to misclassify the object. Compared
to wireless domains, physical attacks in vision domains are
less susceptible to signal distortion and have relatively fewer
domain constraints.

C. Adversarial Attacks on Wireless Domains

There are two types of target wireless systems: (1) wireless
networking, which concentrates on efficient dataflow manage-
ment between networked devices, and (2) wireless communi-
cation and sensing for restoring and analyzing radio signals at
the physical layer. In this paper, we focus on the second point.

Attackers targeting wireless networking seek to deceive the
ML-based network devices into making wrong decisions (e.g.,
for resource allocation). Certain attacks [42], [56] operated
in a white-box setting with complete knowledge of the target
ML model. In contrast, Apruzzese et al. [8] devised a realistic
threat model by assuming a constrained attacker and demon-
strated their performance across various ML systems.
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TABLE I: A comparison of existing adversarial attacks against ML-based wireless communication and sensing.

Attacks Type Channel Non-WB HW Input-Agnostic Protocol-Agnostic Sync-Free Defenses
ML Demo Multimodal Ht Constellation Coding Rate OFDM Time Phase RT PS PD OD

[68]
Offline
Attacks

AWGN ✓ ✓ � � � �
[4] ✓ ✓ � � � �

[59] Multipath
Fading

� � � �
[31] � � � �
[47] � � � �
[8]

Online
Attacks

- ✓ � � �
[67] AWGN ✓ ✓ � � � �
[12] ✓ ✓ �
[39] Multipath

Fading

✓ ✓ � � �
[43] ✓ ✓ � � �
[54] ✓ ✓ ✓ ✓ ✓ � � �
Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ht: a channel matrix between the sender and the receiver; ✓: the item is supported; WB: White Box.
RT: Robust Training (Adversarial Training, Defensive Distillation, and Randomized Smoothing); PS: Perturbation Subtraction; PD: Perturbation Detection; OD: Oracle Defense.

: the attack can compromise the defense; : the defense was considered, but the attack was ineffective.; �: not mentioned in the paper.

When attacking wireless communication and sensing, it
is crucial to design physically realizable perturbations. Ta-
ble I summarizes existing attacks in two categories: offline
attacks and online attacks. Offline attacks are impractical as
they allow attackers unlimited access to inputs and models.
Online attacks address this by adding UAPs to victim signals.
Several works [43], [67] studied methods for crafting UAPs
against radio signal classifiers but aimed to identify theoretical
vulnerabilities rather than design physically feasible attacks.
Flowers et al. [31] identified victim’s transmissions by sniffing
the signal strength of the target channel, but sniffing does
not provide an accurate time offset due to latency and cannot
reveal the modality and wireless protocol. Bahramali et al. [12]
adopted a generative model to produce diverse UAPs, but they
made the unrealistic assumption that the target system sends
only one-hot vector messages [60]. Their attacks are evaluated
individually on each physical layer component rather than on
an end-to-end system. RAFA [54] designed a practically feasi-
ble UAP in a limited-knowledge setting. They solely target the
publicly-known preambles, so their attacks are not applicable
to JSCC which transmits unknown data symbols. In addition,
the JSCC-encoded data are modulated by various protocols
(e.g., modulation, coding rate, and OFDM). Furthermore, due
to the lack of diversity in its perturbations, RAFA can be
directly mitigated by the adaptive defense with high accuracy
(see §IX-B). Additionally, a recent study [45] attacked wireless
sensing systems by assuming that an adversary could install
malicious firmware on the victim transmitter and change pilot
packets. However, we are interested in a more realistic scenario
where an adversarial signal is injected into the target channel.

IV. THREAT MODEL

A. Attack Scenario

Magmaw is targeted towards radio signals created by front-
end sources that are used to transmit the multimodal source
to back-end user(s). The attacker deploys commercial off-the-
shelf (COTS) hardware (e.g., software-defined radios) to send
the attack signals. We focus on vulnerabilities unique to ML in
wireless environments, leading to the failure of the receiver’s
JSCC decoder to correctly decode the received packet. Note
that we exclude the jamming effect [61], a brute-force solution
that disrupts all communication within the medium.

Multiple transmitters and receivers can share the spectrum.
As described in Appendix A, the standard Wi-Fi protocol
ensures only one device uses the wireless channel at a time
within a cell to avoid collision. Magmaw can thus inject

adversarial signals to target different transmitter-receiver pairs
sequentially. Magmaw can also be positioned in a selective
attack [9] that only targets a specific wireless device, leaving
other devices unaffected. Specifically, Magmaw can identify
the victim by sniffing the MAC address in the packet, and
launch the attack whenever the victim device transmits the
packet. Please note that all the above cases are equivalent
to applying Magmaw’s adversarial perturbation to a single
transmitter-receiver pair (as shown in Appendix Figure 20).

B. Adversary’s Goal

Magmaw aims to transmit well-crafted perturbations over
the target wireless channel to prevent legitimate receivers from
recovering the source data and performing target downstream
tasks. To ensure stealthiness, Magmaw sends adversarial sig-
nals with a small magnitude. As a result, the victim cannot dif-
ferentiate between adversarial perturbations and natural noise
from wireless channels. Following the previous studies [12],
[68], we utilize a perturbation-to-signal ratio (PSR) metric to
compare the power of the perturbation at the receiver with the
received legitimate signal power. The PSR is set to be [-20,-
10] dB [12], [68] so that the perturbation is not distinguishable
from the expected natural noise in the channel.

C. Adversary’s Capability and Knowledge

We envision a constrained attacker [7] with limited knowl-
edge of ML-based wireless systems as described below.

Wireless System. We assume that the adversary has no prior
knowledge about the ML model architecture/parameters, but
knows the category of target models (e.g., autoencoder which
is the de facto model for JSCC) and the physical layer tech-
niques being used (e.g., OFDM modulation which is specified
in the communication standard). This is a realistic assumption
for the following reasons: 1) standard documentation usually
describes the core technology and is open to the public,
and 2) specialized operations (see §II-B) for each modality
have already been widely known in the ML community. The
adversary trains surrogate ML-based JSCC models using a
large amount of publicly available data. Note that the attacker
cannot access the target JSCC model or observe the output.

Knowledge about Input and Protocols. We assume that the
adversary does not know the modality and the constellation
mapping method due to the following reasons: 1) all the
application-layer source data, regardless of modalities, need
to multiplex the transmitter radio and wireless channel, 2) the
transmitter can adapt several types of modulation techniques

4



according to channel conditions. Additionally, the JSCC model
can dynamically adjust the coding rate in real time based
on the current channel conditions, so the adversary has no
prior knowledge about the number of OFDM symbols encoded
by the JSCC model in the transmitted signal. However, we
assume that the adversary can refer to the possible coding
rates specified in the standards documents. Lastly, we do not
assume that the adversary knows how the transmitter maps the
OFDM symbol to the subcarriers.

Target Wireless Channel. We consider a real-world attack
scenario where the attacker cannot have access to the channel
matrix between the transmitter and the receiver, i.e., Ht. In
addition, we do not assume that the adversary is synchronized
with either the transmitter or the receiver, leading to random
time and frequency offsets. Furthermore, we assume that the
attacker can determine the carrier frequency used by the
targeted channel. The attacker can overhear the victim’s signals
by arbitrarily adjusting its waveform bandwidth and carrier
frequency using a software-defined radio [52], [102].

Attacker’s Wireless Channel. The attacker employs a single
antenna to send the adversarial signal. We denote the channel
matrix for the attacker as Ha. According to the Wi-Fi protocol,
the receiver periodically sends beacons to wireless devices
within the range [13]. An attacker can overhear this transmis-
sion and estimate the channel matrix from the receiver to itself.
Due to the principle of reciprocity, this channel is the same as
Ha. In contrast to recent work [54], we relax the assumption
that the adversary knows the exact channel matrix between the
attacker and the receiver. We make a weaker assumption that
the adversary has limited information, i.e., the distribution of
the channel between the attacker and the receiver.

V. SYSTEM MODEL

Figure 3 illustrates the core processing blocks in the victim
communication link along with the Magmaw attacker.

ML-based Transmitter. We consider OFDM-based JSCC over
a multipath fading channel with Lt paths. The multimodal
source data are transmitted using Ns OFDM symbols with
Lfft OFDM subcarriers. Note that Ns has different values
depending on the modality and the coding rate. For chan-
nel estimation, the sender transmits a preamble (according
to the publicly available wireless communication standards)
on the subcarriers. We denote the source data as xQ

t with
modality Q ∈ {I,V,S, T } at time step t, where I,V,S, T
denote the image, video, speech, and text, respectively. We
describe a JSCC encoder for processing a modality Q with
a given coding rate λ and modulation scheme C as a func-
tion EQ,C,λ(x

Q
t ,B

Q
t ), where BQ

t is the transmitter’s reference
buffer used for the video JSCC model, as illustrated in Fig-
ure 2 (b). We define the reference buffer BQ

t containing the
previously decoded frame x̃V(·) as:

BQ
t =

{
{x̃V

mσ(1)
, · · · , x̃V

mσ(t−1)}, if Q = V,
∅, if Q ̸= V.

(1)

Recall that mσ(t) is a function that finds the coding order of
the t-th image in the given GOP structure σ. BV

t =∅ when t=1.
This is because the first frame is coded by the image JSCC.
Note that x̃V(·) is reconstructed as the output of a video JSCC

decoder that takes encoded video sequence EV,C,λ(x
V
t ,BV

t ) as
input. λ is the coding rate to control the number of symbols.

Then, a constellation mapping method MC(·) moves sym-
bols to the nearest constellation points in a finite constellation
diagram C. The modulated symbol, Y Q

t ∈ CNs×Nfft , can then
be obtained as:

Y Q
t = MC(EQ,C,λ(x

Q
t ,B

Q
t )). (2)

Without loss of generality, we assume the target transmit-
ter/receiver uses a single antenna following the 802.11a/g/n
Wi-Fi standard [89]. We split Y Q

t into a number of sig-
nal vectors with dimension of Nfft. Afterwards, an OFDM
transmitter allocates divided signals on each subcarrier. Each
OFDM symbol passes through an inverse discrete Fourier
transform (IFFT), then a cyclic prefix (CP) is added and
transmitted to the receiver over a multipath fading channel.

ML-based Receiver. The receiver obtains the complex-valued
symbols from the channel output by removing the CP and
applying FFT with an OFDM receiver. The received signal of
the k-th subcarrier in the i-th OFDM symbol is given by:

Ŷ Q
t [i, k] = Ht[k]Y

Q
t [i, k] +W [i, k], (3)

where Ht ∈ CNfft×Nfft is the frequency-domain channel
matrix, which is a diagonal matrix, and W ∈ CNs×Nfft is
the frequency-domain AWGN matrix.

Given the FFT output of the pilot signals, the channel
estimation and equalization are performed to compensate the
channel-induced transformation. We adopt a least squares
(LS) algorithm to predict the channel state information. After
equalizing all of the divided signals with the channel equalizer
R(·), we quantize the phase and amplitude of the signal on
each subcarrier with MC(·). Finally, we employ the decoder
DQ,C,λ(·) to reconstruct an estimate x̂Q

t of the original signal.
We express the entire process after OFDM receiver as follows:

x̂Q
t =DQ,C,λ(MC(R(Ŷ Q

t )), B̂Q
t )

=FQ,C,λ(Ŷ
Q
t , B̂Q

t ),
(4)

where B̂Q
t is the receiver’s decoded frame buffer for the

video JSCC. B̂V
t ={x̂V

mσ(1)
, · · · , x̂V

mσ(t−1)}, where B̂V
t =∅ when

t=1. B̂Q
t =∅ for other modalities. For simplicity, we denote all

processes after the OFDM receiver as FQ,C,λ(·).
VI. ATTACK CONSTRUCTION

The framework of Magmaw is illustrated in Figure 3. Our
attack methodology follows a hardware/algorithm co-design to
ensure Magmaw is robust against various signal distortions.

A. Our Attack Formulation

General Attack Formulation. Our adversary aims to find an
input-agnostic perturbation δs ∈ CNs×Nfft , with a magnitude
bounded by the attacker’s power budget ϵ ∈ R. When δs is
injected into the victim wireless channel, the receiver obtains
the frequency-domain channel output Ȳ Q

t as:

Ȳ Q
t [i, k] = Ht[k]Y

Q
t [i, k] + Ha[k]δ

s[i, k] +W [i, k], (5)

where Ȳ Q
t [i, k] and δs[i, k] represent the frequency-domain

perturbed response and the adversarial perturbation at the k-
th subcarrier of the i-th OFDM symbol, respectively. Ha is
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Fig. 3: Overview of Magmaw. During the PGM training, the attacker employs the surrogate JSCC model (blue modules).

the channel matrix between the attacker and the receiver. The
attacker can obtain Ha by leveraging channel reciprocity. How-
ever, the attacker does not have access to the target wireless
system and therefore does not know modality Q, modulation
scheme C, Y Q

t , Ht, and JSCC models. One method to address
such a lack of knowledge is to utilize a set of surrogate models
with different configurations (i.e., Q,C, λ) and diverse channel
matrix Ht. Specifically, we seek to generate Y Q

t from a set of
surrogate JSCC models, train UAPs using ensemble learning,
and transfer the learned UAPs to the target system. During this
offline UAP training, we randomly sample Ht from multipath
fading model to make δs channel-agnostic.

Using Equation (4), the receiver in the surrogate model
then feeds this perturbed signal Ȳ Q

t to the remaining physical
layer elements to reconstruct the source with modality Q as:

x̄Q
t = FQ,C,λ(Ȳ

Q
t , B̄Q

t ), (6)

where B̄Q
t is the perturbed decoded frame buffer to be used in

the video JSCC model. B̄V
t ={x̄V

mσ(1)
, · · · , x̄V

mσ(t−1)}, where
B̄V
t =∅ when t=1. B̄Q

t =∅ for other modalities.

As mentioned before, we aim to find the adversarial signals
in a limited-knowledge setting (§IV-C). A representative way
to handle this is to exploit the fact that adversarial examples
exhibit good transferability between different ML models [12],
[54], [58]. By adopting the attack transferability, we first train
a surrogate JSCC model for each modality using publicly
available datasets that have different distributions from the
target model’s training data. Then we use an ensemble learning
approach to find a modality-agnostic adversarial perturbation
δs by solving the following optimization problem:

argmax
δs

[
∑
w∈Ψs

L(w)], s.t. ∥δs∥2 < ϵ, (7)

where Ψs is a set of all wireless signals that can be created by
physical layer elements. L(w) is the loss function of ML-based
JSCC model when w is sampled from Ψs.

However, this attack formulation is not suitable for making
the UAPs physically realizable for the following reasons. First,
having a single δs as the UAP allows the receiver to estimate
the perturbation signal using OFDM pilot signals, resulting in
low robustness and persistence of adversarial attacks. Second,
the adversary has no prior knowledge of the number of OFDM
symbols in the target signal and thus is unable to define δs

as a matrix of the same size as the transmitted signal. Third,
the video JSCC model has a network structure that forms a
temporal chain between all video frames within the same GOP,
so the model encodes current source data based on previous
encoding results. This constructs the inter-frame dependency
within a video sequence and it should be considered in crafting
the UAPs. Fourth, the adversary does not know the distribution
of the channel inputs carried by each OFDM subcarrier.
Finally, when the perturbation signal overlaps with the benign
signal, time or phase offsets may occur.

Practical Attack Formulation. To address the problem of
Equation (7), we construct a Perturbation Generator Model
(PGM) G(zt) = δut that generates a UAP signal by receiving
a random trigger zt at time step t. We adopt a ResNet-based
generator [27]. The adversary changes zt and injects a new
perturbation signal into the target channel each time. Compared
with using a single δs as the UAP, the adversary creates an
extremely large set of perturbations, which makes it difficult
for the receiver to predict the perturbations. The following
equation holds for frequency-domain complex-valued symbols
at the receiver in the attacker’s surrogate models:

Ȳ Q
t [i, k] = Ht[k]Y

Q
t [i, k] + Ha[k]Pτ (δ

u
t )[i, k] +W [i, k], (8)

where δut ∈ CNg×Nfft denotes a UAP which contains Ng

data symbols. Since the attacker does not know the number
of target symbols, Ng may not be equal to Ns. We define
a novel transformation function Pτ which enables the PGM-
generated wireless signals to model the distribution of real
wireless data. The transformation function consists of several
steps: 1) symbol extension model, 2) symbol shuffling model,
3) time rotation, and 4) frequency rotation. The symbol ex-
tension model concatenates multiple PGM-generated perturba-
tions such that the symbol-extended perturbations can perturb
all OFDM symbols of the target radio signal. The symbol
shuffling model makes our attack robust against unknown
target symbols by randomly shuffling symbols between the
OFDM subcarriers of the adversarial signal. The time and
phase rotation changes the offset of the adversarial signal
during offline training so that the adversarial signals are
agnostic to random time and phase shifts in the real world.
We also incorporate the power normalization into the transfor-
mation to make Magmaw undetectable from natural noise. The
wireless properties controlled by the transformation function
are parameterized with τ . Figure 3 shows all the modules
included in the transformation function. With the help of Pτ ,
the PGM can be optimized to produce the perturbation signals
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Algorithm 1 Magmaw

Input: Dataset TQ, Surrogate JSCC model, Power constraint ϵ
Output: PGM G(·)
for epoch l < MaxIter do

for each modality Q ∈ {I,V,S, T } do
for each batch BQ ∈ TQ do

C, λ← is sampled uniformly from candidates
Ht is randomly sampled from channel model
Ha is sampled uniformly from training set
if Q = V then

for xV
t ∈ BV (= {xV

1 , · · · ,xV
P }) do

Y V
t ← Equation (2)
BVt .append(x̃V

t )
zt ∼ Uniform(0, 1), z′t ∼ Uniform(0, 1)
τ ← uniformly at random
Ȳ V
t [i, k]← Equation (8)

x̄V
t ← Equation (6)
B̄Vt .append(x̄V

t )
else

Y Q
t ← Equation (2)

zt ∼ Uniform(0, 1), z′t ∼ Uniform(0, 1)
τ ← uniformly at random
Ȳ Q
t [i, k]← Equation (8)

x̄Q
t ← Equation (6)

Update PGM G and D by solving Equation (13)
Return: PGM G

that are resilient to real-world transformations. In §VI-B, we
explain the internal mechanisms of Pτ .

We define an optimization problem to train the PGM that
generates a hardware-implementable perturbation signal as:

argmax
G

E
zt∼pz

[
∑

w∈Ψu

Lrx(zt, w)],

Lrx(zt, w) =


Lmse(x

I
t , x̄

I
t ), if Q = I,∑mσ(P )

t=mσ(1)
Lmse(x

V
t , x̄

V
t ), if Q = V,

Lmse(HF (x
S
t ), HF (x̄

S
t )), if Q = S,

LCE(HG(x
T
t ), HG(x̄

T
t )), if Q = T ,

(9)

where Ψu is a set containing all radio signals that can be
generated by the surrogate ML models. The perturbed signals
at the receiver are computed from Equation (6). We use mean-
squared error (MSE) loss as the distortion function Lmse. We
train the PGM to maximize distortion on a frame-by-frame
basis for the image JSCC model. For the video JSCC model,
we consider the inter-frame dependency between adjacent
frames as the sum of the distortions over all frames within the
GOP. This allows the PGM to adapt to any GOP without the
need to reconfigure the attack. As for speech, we transform the
speech data into a one-dimensional vector via the deframing
function HF before the loss is calculated. Since the text JSCC
model completes sentence restoration by sequentially finding
the probabilities that words will appear with a greedy decoder
HG, we use a cross-entropy loss LCE between the predicted
sentence HG(x̄

T
t ) and the ground truth sentence HG(x

T
t ).

Downstream Attack Formulation. Figure 3 depicts down-
stream tasks appended to the wireless communication pipeline.
We consider two ML models as examples: 1) VC and 2) AVE.
Let FN denote a discriminant function for the receiver’s down-
stream task N ∈ {VC,AVE}. After the receiver demodulates
incoming perturbed signals into data, the discriminant function
takes the data X̄N and outputs a probability distribution over
a set KN of class labels. Note that the VC takes a video clip
X̄VC = {x̄V

t }Tt=1 consisting of T consecutive frames and the

AVE receives X̄AVE = {x̄I
t , x̄

S
t } as two inputs. A classifier

for task N , CN , points X̄N to the class with the maximum
probability: CN (X̄N ) = arg maxc∈KN

FN
c (X̄N ), where FN

c is
the probability of the perturbed input belonging to a specific
class c. We define a loss LN

cls to subvert classifiers:

LN
cls = max

c̸=CN (X̂N )
FN
c (X̄N )− FN

CN (X̂N )
(X̄N ), (10)

where X̂N denotes the reconstructed data when there is no
attack. X̂VC = {x̂V

t }Tt=1 and X̂AVE = {x̂I
t , x̂

S
t }. The attack

succeeds when LN
cls > 0. With the ensemble learning, we

find UAPs that maximize LN
cls for the surrogate model with

different architectures from the target model. We then fool
the downstream services by transferring the attacks calculated
from the surrogate model to the target model.

Stealthy Attack Formulation. Existing works [12], [54] have
a problem that an adaptive defender can devise an anomaly
classifier [93] that identifies the attacks by analyzing the
perturbation’s statistical behavior. To enforce the generator to
produce undetectable perturbations, we explicitly regularize
our PGM with the discriminative loss [33]:

Lds = logD(MC(R(Ŷ Q
t ))) + log(1−D(MC(R(Ȳ Q

t ))), (11)

where D is a discriminator [37] that distinguishes clean signals
from perturbed signals. We aim to minimize Lds for forcing
our PGM to explore the latent space and discover robust
adversarial examples. To guarantee that the PGM properly
produces the diversified perturbation, we utilize the diversity
sensitive loss [27]:

Ldv = E
zt,z′

t

[∥G(zt)−G(z′t)∥1], (12)

where zt and z′t are two different random latent codes.

Unified Attack Formulation. Finally, we integrate all losses
into the objective function so that UAPs generated by the PGM
can perturb wireless communication and downstream services
simultaneously. Specifically, our goal is to solve the following
objective function:

max
G

min
D

E
zt
[
∑

w∈Ψu

[Lrx +
∑
N∈N

βN
clsLN

cls − βdsLds]] + βdvLdv, (13)

where βN
cls, βds, and βdv weigh the relative importance of each

term and N = {VC,AVE}. PGM generates a perturbation
conditioned on the latent code and multiple controllable pa-
rameters of the wireless protocols, while D tries to distinguish
between perturbed and clean signals.

In Algorithm 1, we outline the training process. Please refer
to §VII-A for the parameters selected in the experiment. Our
goal is to train the PGM G that generates UAPs to subvert
ML-based JSCC models. We ensemble outputs of multimodal
JSCC models to find generalizable adversarial signals that can
transfer between modalities and protocols. The ML model used
for training is a surrogate model that is different from the target
model. We utilize the transformation function Pτ to change the
outputs of PGM to practically feasible adversarial signals. At
each training iteration, the algorithm selects a batch from the
training dataset T with a different distribution from the training
dataset of the target model. We ensure that the PGM learns
effective UAPs leveraging ensemble learning, which integrates
a set of JSCC models with different Q,C, λ. The loss values
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Fig. 4: Symbol extension mechanism. The perturbation length
is extended to match the maximum length of the target signal.
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Symbol-Shuffled Perturbations (𝜇 ȉ 𝑁 symbols)
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Randomly

Fig. 5: Symbol shuffling mechanism. The complex-valued
symbols assigned to the subcarriers are randomly shuffled.

derived from each JSCC model are jointly backpropagated to
optimize the PGM using the Adam optimizer [44]. As a result,
we solve four technical challenges described in §I: (1) multi-
modality and unknown Ht, (2) unknown protocols, (3) de-
synchronization, and (4) susceptibility to adaptive defense.

B. Design of Our Transformation Function

To cope with challenging real-world scenarios, the adver-
sary should craft input-agnostic UAP signals regardless of syn-
chronization with the legitimate receiver. The transformation
function Pτ helps PGM learn to produce perturbations with
a distribution similar to that of adversarial signals that can
be realized in the real environment. Therefore, our adversarial
signals are agnostic to 1) inconsistency of the number of data
symbols between the benign signal and the adversarial signal,
2) unknown symbol allocation across the OFDM subcarriers,
3) time misalignment, and 4) unknown phase rotation. We
additionally include a power regularization for undetectability.
The modules included in the transformation function are shown
in Figure 3 and detailed below.

Symbol Extension Model. The number of OFDM symbols
varies greatly depending on the modality and coding rate.
Furthermore, the coding rate of the JSCC encoder determines
the amount of data compressed. In an online attack, the modal-
ity and coding rate are unknown. This leads the adversary
to make the attack signal invariant to the number of OFDM
symbols contained in the target signal. As the information
about the coding rate is publicly available (see §IV-C), we
can find the maximum value of Ns. As shown in Figure 4, we
concatenate the PGM-generated signal multiple times through
function K(·) such that µ ·Ng is equal to the maximum value
of Ns, where µ is a parameter to adjust the number of symbols.
Hence, our symbol-extended perturbations can perturb all sym-
bols of the target signal without prior knowledge of the target
signal’s symbol count. Then, we ensure that the concatenated
perturbations achieve high generalizability for multiple coding
rates. In Algorithm 1, we randomly select the coding rate λ
for each training epoch.

Symbol Shuffling Model. Previous works [39], [54] make the
assumption that the adversary knows how the target wireless
system allocates symbols to each subcarrier. This is infeasible
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Fig. 6: Experimental settings established in Magmaw.

in practice, because standard wireless communications often
randomize the allocation to prevent consecutive repetition of
the same symbols. Our adversary aims to make a subcarrier-
invariant perturbation that is universally applicable to any
symbol distribution of subcarriers. We define a function Γ(·)
that randomly shuffles the symbols assigned to the subcarrier
based on a seed ζ, as shown in Figure 5. Consequently, we
train the PGM to generate the attack signal that is robust to
the unknown symbol distribution across OFDM subcarriers.

Time and Frequency Rotation. Due to time and frequency
misalignment, a random phase rotation occurs in each OFDM
subcarrier. In order to enforce our perturbation to learn shift-
invariant properties, we employ a phase rotation function
e−j2πfk∆t+jϕ from the previous approaches [12], [54], [68],
where ∆t and ϕ are time difference and phase offset between
the benign signal and the adversarial perturbation, respectively.

Power Normalization. M(·) is a power normalization func-
tion that adjusts the perturbation signal according to ϵ, which
is the upper bound on the attacker’s signal power. We follow
the existing power remapping function [12] to preserve the
power constraint of the perturbations as follows:

M(γu
t , ϵ) =

{√
ϵ

γu
t

∥γu
t ∥2

, ∥γu
t ∥

2
2 > ϵ,

γu
t , ∥γu

t ∥
2
2 ≤ ϵ.

(14)

where PSR is the ratio of the power of the attack signal to
the power of the victim signal. ϵ is defined as ∥ŷt∥22 · 10

PSR/10,
where ŷt is the time-domain signal in Equation (3). γu

t is the
output of the symbol extension and symbol shuffling models.

Transformation Function. Consequently, we obtain the con-
verted perturbation signal transmitted from the k-th subcarrier
of the i-th OFDM symbol through the transformation function
Pµ,ζ,ϵ,ϕ,∆t(·) as follows:

Pµ,ζ,ϵ,ϕ,∆t(δt)[i, k] = M(γu
t , ϵ)[i, k]e

jϕe−j2πfk∆t,

where γu
t = Γ(K(δut , µ), ζ).

(15)

Here, the transformation function is controlled by various
parameters µ, ζ, ϵ, ϕ,∆t.

C. Hardware Implementation

Figure 6 shows real-world attack scenarios in which the
attacker (red device) sends a perturbation signal to the receiver.
To thoroughly study radio signal propagation, we classify the
physical environment into Line Of Sight (LoS) or NLoS (Non
Line of Sight) between the transmitter and receiver. We obtain
the experimental results from both Tx-Rx scenarios and then
indicate the distribution of the results. We further showcase
the difference in efficiency for each scenario in §VII-D.

Target Wireless System. We first implement the ML-based
wireless communication system depicted in Figure 3 through
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Fig. 8: Visualization of attack effects on multimodal JSCC.

USRP B210, a software-defined radio widely used in designing
wireless communication systems. We drive the USRP B210
using GNURadio software package [17] that provides a graph-
ical programming interface for configuring transceivers and
allows us to model the customized blocks. The transmitter
and receiver consist of a USRP B210 and a Linux laptop,
respectively, and they communicate through a single antenna,
where the carrier frequency is set to 2.4 GHz. The number of
cyclic prefixes and subcarriers Lfft is 16 and 64, respectively.
Of the 64 subcarriers, 48 are used to carry symbols for ML-
based JSCC, 4 of which are used for pilot symbols.

Attack System. We build an adversarial transmitter using a
USRP N310 device with a single antenna and a Linux desktop.
We randomly move the antenna to collect 2000 random real-
izations of the channel {Hl

a}2000l=1 between the adversarial trans-
mitter and receiver. Following the previous work [12], we set
the range of PSR to [-20,-10] dB. To perform the UAP attack,
we adopt surrogate models with different architectures and
parameters from the target wireless communication system and
the downstream classifier. We train the PGM offline according
to the Algorithm 1. The hyperparameters (βVC

cls, β
AVE
cls , βds, βdv)

are all set to 1.

VII. ATTACK EVALUATION

A. Experimental Setup

ML Models. We consider four state-of-the-art JSCC mod-
els that deliver multimodal data over the wireless channel
and re-implement them based on several open-source re-
sources [90], [98]. In Appendix Table III, we show the sur-
rogate JSCC models1. We use constellation mapping schemes

1We also evaluate how less similar surrogate models affect the attack
performance in Appendix B.
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Fig. 10: CSI heatmap when the sampling rate is 200Hz.

C ∈ {QPSK, 16-QAM, 64-QAM} adopted in wireless stan-
dards and coding rates λ ∈ { 1

6 ,
1
12} chosen from existing

literature. The coding rate is computed as channel usage per
source [98]. Note that each JSCC model has different model
weights based on the variations of C and λ.

Downstream Tasks. We also consider scenarios where the re-
ceiver applies the demodulated data to ML-based downstream
services, such as VC and AVE. For the VC task, we benchmark
three state-of-the-art models, namely, I3D [22], SlowFast [30]
and TPN [95]. As a benchmark model for a multimodal task,
we choose the AVE proposed by [78]. Appendix Table IV
depicts surrogate models to craft transferable attacks.

Dataset. We choose popular multimodal datasets to train and
evaluate JSCC models. For training the image and video
JSCC models, we adopt the Vimeo90K dataset [94], which is
widely used in evaluating image and video processing tasks.
To facilitate efficient training, the video sequences are cropped
to a resolution of 256× 256. We then evaluate the image and
video JSCC models using the UCF-101 dataset [74]. For the
speech JSCC model, we use the speech dataset from Edinburgh
DataShare [80], which contains more than 10,000 training
data and 800 test data with a sampling rate of 16 KHz. We
truncate the speech sample sequence to have 128 frames with
a frame length of 128 after framing. For the text JSCC model,
we select the proceedings of the European Parliament, which
includes about 2 million sentences and 53 million words. We
pre-process the dataset to have sentence lengths between 4
and 30 words. We then split it into training and test sets. We
also select widely used datasets as benchmarks to evaluate VC
and AVE downstream tasks. We adopt the UCF-101 human
activity dataset [74] to verify Magmaw on the VC model. For

9



20 18 16 14 12 10
PSR (dB)

20

40

60

Ac
cu

ra
cy

no attack
Random attack
White-box attack
Magmaw

20 18 16 14 12 10
PSR (dB)

20

40

60

80

Ac
cu

ra
cy

20 18 16 14 12 10
PSR (dB)

20

40

60

Ac
cu

ra
cy

20 18 16 14 12 10
PSR (dB)

0

20

40

60

80

Ac
cu

ra
cy

I3D [22] SlowFast [30] TPN [95] AVE [78]

Fig. 11: Magmaw on ML-based downstream classification tasks (i.e., VC and AVE).

evaluating the AVE model, we adopt the audio-visual event
dataset [77] which contains 4,143 video clips with 28 events.

Evaluation Metrics. We use evaluation metrics that effectively
reflect the semantic information of each modality. In the image
and video domains, we select the PSNR as the representative
picture quality measurement. In the speech domain, the MSE
reflects the quality of the received speech. For the text domain,
the BLEU score [14] is widely used to compare the difference
between the original sentence and the reconstructed one. We
measure the experimental results from the two Tx-Rx scenarios
(see Figure 6), and then plot the distribution of the results in
the figure. We use the black dotted line as the quality threshold
for each experimental result, indicating that the result below
it is not properly restored, which can pose a serious threat to
back-end users.

Baseline Attacks. We compare Magmaw with four types of
baseline attacks: (1) Random Attack, (2) Vanilla UAP Attack,
(3) Sync-Free UAP Attack, and (4) One-hot Vector Modality-
based (OVM) UAP Attack [12]. We design the random attack
to transmit randomly sampled Gaussian noise into the air. It
resembles classic jamming, as Gaussian jamming is widely
used [32]. The vanilla UAP is an entry-level attack where
multi-modality, protocol, and synchronization are not consid-
ered in crafting perturbations. The sync-free UAP attacker
knows the perturbation undergoes time and phase shifts and
tries to exploit such knowledge to devise shift-invariant attacks.
Following previous work [12], OVM UAP is trained with a
dataset consisting of one-hot vector messages. For downstream
tasks, we compare Magmaw to random and white-box attacks.

B. Attacks against Multimodal JSCC

Analysis of Magmaw. Figure 7 presents the reconstruction
performance of the ML-based wireless transmission systems
under adversarial attacks. We sweep PSR from -20dB to -
10dB with steps of 2dB. We compare the performance of
Magmaw to that of the baseline attacks. As shown in Figure 7,
Magmaw dramatically deteriorates the performance metrics
in the range of all PSRs. Note that “no attack” shows the
original performance of the benign model. When applying
the adversarial attacks on the image JSCC model, the PSNR
drops by up to 8.04dB. For the video JSCC model, PSNR
is lowered by 8.29dB on average by Magmaw. We see that
the video model is more vulnerable to our adversarial signals
than the image JSCC model. The main reason is that the video
JSCC model encodes the current frame based on the previously
decoded frame, thus propagating the reconstruction distortion
to the next frame. For the speech model, we find that Magmaw
degrades MSE loss by 3.91 times more than the baseline. We
also observe that the BLEU score of the text JSCC model
drops to a minimum of 0.338 points under Magmaw.

Comparison with Baselines. As depicted in Figure 7, Mag-
maw outperforms the baselines by a large margin. Against the
image JSCC model, Magmaw lowers PSNR by up to 5.68dB
more than the vanilla UAP attack and up to 4.85dB more than
the sync-free UAP attack. We see that OVM UAP attacks
have similar results to random attacks. Without considering
the multi-modality, wireless protocols, and vulnerabilities of
the model, the evaluated baselines cannot critically hurt the
JSCC.

Attack Visualization. As shown in Figure 8, we visualize
the attack effect on the multimodal data reconstruction at the
receiver. As seen, the JSCC decoder fails to retain semantic
information. Specifically, the restored images and videos have
noise-like artifacts, which dramatically reduce the users’ qual-
ity of experience (QoE). Furthermore, the user cannot hear the
speaker’s voice in a speech sequence due to noticeable noise.
The text JSCC decoder generates sentences with incorrect
grammar and context, so the user cannot understand the
sender’s message. In Figure 9, we present the differences
in complex-valued symbols before and after the attack. We
observe that Magmaw’s low PSR results in minimal changes
to the original signal. Additionally, as shown in Figure 10, the
variation in channel state information (CSI) due to perturbation
is extremely low.

Analysis of Modulation. In Appendix Figure 22, we fur-
ther demonstrate the attack results of Magmaw for different
constellation mapping methods. We confirm that Magmaw
severely degrades the performance of JSCC models regardless
of constellation type. As 64-QAM has slightly higher recovery
performance than other modulations (16-QAM, QPSK) in all
modalities, we confirm that the higher order of the modulation
helps to increase the robustness.

C. Attacks against Downstream Tasks

Analysis of Magmaw. We evaluate the accuracy of each
classifier when Magmaw is directed to a downstream classifier.
Then, we provide a comparison with other baseline attacks.
Figure 11 shows the attack results for the video classifiers
I3D [22], SlowFast [30], and TPN [95] and the audio-visual
event classifier AVE [78]. We compare the performance of
Magmaw to white-box and random attack scenarios. We see
that the changes made in random attacks are not optimized
to subvert the model. In the white-box attack scenario, the
attacker has complete knowledge of the classification model.
Figure 11 presents the accuracy of each baseline for different
PSRs. As shown, transmitting randomly sampled perturba-
tions performs very poorly compared to Magmaw. As our
attack consistently achieves comparable attack performance
compared to the white-box attacks, we confirm that our UAP
signals are successfully transferable to unseen downstream
models. Specifically, Magmaw achieves an average attack
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Fig. 12: Results for targeted UAPs on downstream tasks.

success rate of 81.6%, which is only 8.7% lower on average
than white-box attacks.

Analysis of Modulation. To analyze the influence of different
constellation mapping techniques on the downstream tasks, we
illustrate the attack results on the downstream classifiers when
different constellation mapping methods are applied to ML-
based wireless communication systems in Appendix Figure
22. Although 64-QAM can increase accuracy slightly more
than other modulations, we observe that our protocol-agnostic
attack defeats all modulation techniques.

Analysis of Targeted Attacks. We investigate targeted UAPs
aimed at flipping the prediction of inputs to a target class. To
accomplish this, we define the loss function as below:

LN
cls = FN

c∗ (X̄N )−max
c̸=c∗

FN
c (X̄N ), (16)

where c∗ is a target class. We train the PGM by replacing LN
cls

in Equation (13). Targeted attacks gain success if and only if
LN
cls > 0. As shown in Figure 12, the targeted UAPs achieve

up to 82% accuracy in AVE when PSR is -10dB. Compared
to untargeted UAPs, the fooling ratio is relatively low because
it is more challenging to trick the predictions of all samples
into a specific class [100].

D. Ablation Study

Impact of Multi-Modality. To understand the importance, we
study the transferability of adversarial perturbations between
different modalities. For each modality, we learn a modality-
specific perturbation signal and then conduct an experiment in
which we inject the learned perturbation into the radio signals
of other modalities. As shown in Figure 13 (a), we see that
the lack of learning generalized adversarial features limits both
the cross-modal and cross-model transferability.

Effect of Modulation. To verify the effectiveness of protocol-
agnostic attacks, we conduct an ablation study on attacking
JSCC without considering the constellation mapping method.
As shown in Figure 13 (b), eliminating knowledge of the phys-
ical layer protocol has a significant impact on the effectiveness
of the attack. We enable the transferability of adversarial
examples by creating diverse modulated signals.

Impact of Tx-Rx Placement. Each Tx-Rx scenario has differ-
ent amounts of multipath because the power via the LoS path
is stronger than power via the reflection path. To investigate
the influence of multipath, we first compare the performance
of JSCC in the two scenarios when there is no attack. As
shown in Figure 14 (a), we see that the NLoS path makes
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Fig. 13: Visualization of reduced attack performance when the
attacker doesn’t consider modality or modulation.
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Fig. 14: Impact of Tx-Rx placement. We measure the perfor-
mance degradation of JSCC on NLoS paths compared to the
performance of JSCC on LoS paths.

the interference issue in wireless communication, reducing the
performance of JSCC by 5%. We then inject our perturbations
into the channel to analyze the effect of the NLoS path. As
shown in Figure 14 (b), we confirm that Magmaw is effective
regardless of the location of Tx-Rx. A slight decrease in attack
performance when the Tx/Rx path is NLoS is due to the
degradation of the original performance of JSCC.

VIII. RESILIENCY TO DEFENSE

The defense performance depends on what information the
defender knows about the attack formulation. From §VIII-A to
§VIII-C, we present multiple expert defenders who know the
PGM’s model architecture, the channel distribution between
the attacker and the receiver, and attack mechanisms illustrated
in Algorithm 1. In §VIII-D, we test Magmaw against an oracle
defender who knows every detail about Magmaw.

A. Adversarial Training

The defender aims to obtain a robust ML-based JSCC
model for each modality to protect the physical layer from
the Magmaw. Since we assume that the defender knows the
model architecture of the PGM, adversarial training extends the
training dataset to include all adversarial examples and then
trains a JSCC model on the augmented dataset. Algorithm 2
shows detailed steps of our adversarial training. We refer to
the target JSCC models as JQ,C,λ, and denote the PGM as G,
which is identical to the attacker’s model architecture but with
different model parameters. The defender trains an ML-based
JSCC model by selecting a batch from the training dataset DQ

and generating the adversarial signals controlled by several
parameters of the transformation function Pτ . We then expand
the training dataset to include all adversarial examples and
train the model on the augmented training dataset.

ML-based Wireless System. We validate Magmaw against the
ML-based wireless communication systems, whose resiliency
has been improved by adversarial training. As shown in
Figure 15 (a), incorporating adversarial examples inside the
model training process results in a lower ability to restore
source data even if the underlying victim model is not attacked.
Moreover, we observe that adversarial training cannot protect
ML-based wireless communication from Magmaw. The reason
is that the JSCC model has to be trained on a huge set of
perturbations that the defender generates with PGM. Yet it
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Fig. 15: Evaluation of defenses. AT and PS denote adversarial training and perturbation subtraction.

Algorithm 2 Adversarial Training against Magmaw

Input: Dataset DQ, ML-based JSCC model JQ,C,λ, PGM G,
Output: Robust JSCC model JQ,C,λ

Q← Modality, C ← Modulation, λ← Coding rate
for epoch l < MaxIter do

Ht is randomly sampled from channel model
Ha is sampled uniformly from training set
Badv ← [ ]
for each batch BQ ∈ DQ do

Train the JSCC model JQ,C,λ on BQ

zt ∼ Uniform(0, 1)
τl ← randomly sampled {µ, ζ, ϵ, ϕ,∆t}
Store Pτl (G(zt)) in Badv for each data in BQ

DQ.append(DQ + Badv)
Return: Robust JSCC model JQ,C,λ

is not feasible for the defender to train JSCC models that
are resilient to all possible perturbations. Another reason is
that the defender uses a PGM with different parameters from
the attacker’s model, so the distribution of adversarial signals
generated by the two models is different.

Downstream Tasks. Figure 15 (b) shows the accuracy of the
downstream models trained by adversarial training. Adversarial
training significantly reduces the accuracy of benign models,
hindering their applicability. We observe that Magmaw still
achieves a high attack success rate even though the benign
model undergoes adversarial training. This is because training
a model that is universally robust to different types of perturbed
signals, while being able to correctly classify input data, is a
fundamentally challenging problem.

B. Perturbation Signal Subtraction

This defense scheme can be performed at the physical
layer before the signal is passed through the OFDM receiver.
Defenders aim to mitigate the effects of perturbations and
reconstruct the originally transmitted signal. As we assume that
the defender has knowledge of Magmaw’s model architecture,
the receiver generates a perturbation signal via the defender’s
PGM and then subtracts it from the received wireless signal.

ML-based Wireless System. The defense results are summa-
rized in Figure 15 (a). We observe that the source data restored
by each JSCC model is more degraded than before the defense.
This is because the cancellation of the adversarial signal fails

and further amplifies the power of the perturbation. Even if
the defender knows the structure of the PGM, the defender
cannot generate exactly the same perturbation signal if the
model parameters of the PGM are different.

Downstream Tasks. As shown in Figure 15 (b), applying
perturbation signal subtraction reduces the accuracy of the
downstream services by an average of 3.6%. We see that
the defender cannot increase the accuracy of the downstream
classifier by simply subtracting an estimate of the perturbation.
The accuracy of the classifier tends to depend heavily on the
quality of the input source.

C. Adversarial Perturbation Detection

We define an input-level detection that aims to correctly
find adversarially manipulated signals at the receiver side.
The underlying hypothesis for this defense follows previous
studies [93], [97] that show that UAPs may leave signatures
observable by ML-based anomaly detection algorithms. Based
on this, we design a perturbation detector [73] that acts
as a discriminator to distinguish the clean signal Ŷ Q

t from
the perturbed signal Ȳ Q

t . Leveraging the trace of UAPs, we
design the binary classifier as follows. First, we train the
detector offline using the training dataset constructed from the
defender’s PGM. In the online process, we label the received
signals as adversarial attacks when the efficiency of JSCC
deteriorates and include them in the training data. Finally, we
fine-tune a well-trained model with newly collected data.

Appendix Figure 23 (a) summarizes the detection accu-
racy and false positive rate of our perturbation detector. It
shows that Magmaw can bypass detection, even though the
fine-tuning improves the accuracy of the detector. This is
because Magmaw is trained to generate perturbed signals,
which are indistinguishable from the clean signal, as shown

TABLE II: Detection AUC of perturbation detection. The first
row shows the result before fine-tuning, and the second row
shows the result after fine-tuning.

Image Signal Video Signal Speech Signal Text Signal
Detection

AUC
53.2% 52.5% 52.8% 53.4%
55.6% 54.4% 56.5% 57.1%
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Fig. 16: Evaluation of Magmaw against oracle defenders in wireless systems and downstream tasks. The first and second rows
are the results of JSCC and downstream tasks, respectively.

in Equation (11) and Equation (12). For example, the fine-
tuned detector only obtains up to 12% accuracy to detect
perturbed radio signals in the text transmission. The results
in Appendix Figure 23 (b) have shown the detection rate
of the perturbation detector when Magmaw conducted the
training without regularization loss. The detector achieves
about 75% detection rate after fine-tuning. We verify that
ML-based detectors can offer strong generalization capability
in distinguishing PGM-generated perturbations. In order to
train undetectable and robust UAPs, we should leverage a
discriminator to enforce stealthiness.

As shown in Table II, we report the Area Under Curve
(AUC) of Receiver Operation Characteristic Curve (ROC)
of the perturbation detection. The AUC metric shows the
probability that the detector will assign a higher score to a
perturbed signal than to a clean signal. We verify that the
AUC results are close to the random guess, which means that
Magmaw can achieve high undetectability. Another drawback
of malware classifiers is that when an attacker changes posi-
tion, the channel matrix between the attacker and the receiver
also changes, requiring the defender to collect new datasets to
adapt to the new environment.

D. Oracle Defender

It is crucial to identify the lower bound of the effectiveness
of attacks [20]. We define two strong defenders as follows:

• Oracle Defender knows comprehensive details of
Magmaw, including the PGM architecture and pa-
rameters, Ha, the time and frequency offsets between
Magmaw and receiver, and how Magmaw assigns
symbols to OFDM subcarriers.

• Oracle Defender without Sync Assumption is aware
of all details except the time/frequency offset. This is
practical because otherwise, the receiver has to coor-
dinate with the attacker to estimate the time/frequency
offset and convey the information to the defender.

These defenders reconstruct the signal by removing the attack
effect from the received wireless signal by utilizing the same
perturbations generated by Magmaw.
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Fig. 17: Attack results on secure image communication. We
visualize the attack results, input data, and reconstructed data
at the receiver side.

ML-based Wireless System. The oracle defender can com-
pletely neutralize Magmaw, as shown in Figure 16. These
results are consistent with those reported in [12], which also
points out that this defense is not practical. We further measure
defense performance by eliminating the assumption that the
attacker and receiver are synchronized. The oracle defense
without sync assumption can only reduce the efficiency of
Magmaw by up to 21.42%. This is because lack of syn-
chronization causes inaccuracies in the results of perturbation
removal. See detailed results in Figure 16.

Downstream Tasks. We also investigate the adversarial robust-
ness of downstream tasks in the presence of oracle defenders.
We verify that addressing synchronization robustness is es-
sential to increasing the effectiveness of the oracle defender.
Specifically, without sync assumption, the oracle defender only
improved the robustness of the classifier by at most 16.8%.
Detailed results can be found in Figure 16.

IX. CASE STUDY

A. Attacks on Encrypted Communication

Encryption schemes are commonly applied in the commu-
nication pipeline to protect users’ private data [79]. While the
robustness of privacy-preserving communications with ML-
based JSCC has not been investigated before, we add the
encryption and decryption blocks in image JSCC to examine
the impact of Magmaw on secure transmission, and analyze
the vulnerability of encrypted signals.

Experiment Design. ML-based JSCC encoder directly maps
the source to the complex-valued symbols without converting
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Fig. 19: Attack results on FIRE [53]. We visualize the channel
amplitude and phase. FIRE takes the uplink channel (blue line)
as input and predicts the downlink channel (red line) that is
expected to be the same as the ground truth (yellow line).

it to bits. To handle this new feature, public-key encryption
with LWE [65] rather than classical AES-based schemes [57]
is applied in JSCC [79]. In public-key encryption, any user
can send encrypted messages to the receiver using the public
key. Thus, we assume that the adversary knows the public key,
but does not know the secret key.

Attack Results. Figure 17 shows the attack results on the
secure communication system. We see that the OFDM sym-
bols carrying the ciphertext of the image data are vulnerable
to our perturbation signal. Specifically, Magmaw lowers the
performance of secure image transmission by up to 5.88dB.
This is because the decrypted output of ciphertext operations
in LWE is similar to performing plaintext operations on the
original plaintext data. By showing that secure communication
does not provide adversarial robustness, we promote the need
for new defense techniques against Magmaw.

B. Attacks on ML Systems with Channel States as Input

Standard-defined preambles [16] are widely used in ML-
driven wireless systems to obtain the CSI. We consider two
ML models that are also used as target models in RAFA [54]:
(a) DLoc [11] performs localization task via CSI received from
four fixed access points, and (b) FIRE [53] takes the CSI of
the uplink channel as input and then predicts the downlink
CSI. It can address the overhead of feedback exchange in the
Frequency Domain Duplex (FDD) system.

Experiment Design. In the experiment setup, the sender
allocates preambles Y P

t to OFDM subcarriers (i.e., 64 sub-
carriers for 20MHz) and then transmits them to the receiver.
Here, P denotes the preamble. Since Magmaw injects attack
signals into the channel according to Equation (8), the received
preamble is Ȳ P

t . Thus, the receiver acquires the perturbed CSI
via HP

t = Ȳ P
t /Y P

t and feeds it into the target ML model. We
re-implement the target models via details provided in their

papers, as well as open source [10] and the dataset [71]. We
further improve the robustness of DLoc and FIRE through
adversarial training proposed by RAFA. For a fair comparison,
we utilize surrogate models used in RAFA to train Magmaw.

Attack Results. We compare our attack with RAFA for a
comprehensive evaluation. As shown in Figure 18 (a), DLoc
achieves 0.71m and 1.03m localization errors at the 90th and
99th percentile. However, when Magmaw is present, the results
go up to 2.7m and 9.8m. We can observe that Magmaw outper-
forms RAFA by 1.73× on average. Figure 18 (b) describes the
accuracy of channel estimation by FIRE. The SNR measures
the similarity between the estimated downlink channel and
the ground truth. We confirm that Magmaw drops the SNR
of the predicted channel by 3.8dB more than RAFA. The
observed underperformance of RAFA can be due to the lack
of consideration for improving the robustness of adversarial
attacks during the training. In contrast, Magmaw achieves
high robustness by leveraging a discriminator and diversity
loss that increases the variability of perturbation patterns.
To provide an intuition of the attack effect, we visualize an
example of channel estimation in Figure 19. Figure 19 (b)
shows that Magmaw causes subcarriers to have symbols that
are significantly different from the actual symbols.

X. CONCLUSION AND FUTURE WORKS

We present Magmaw, a novel attack framework to subvert
semantic communication for AI-native networks. Our results
show that the Magmaw is feasible in the real world, and can
degrade the performance of both wireless communication and
downstream tasks simultaneously. Magmaw maintains a high
attack success rate by evading several defenses. In case studies,
we evaluate Magmaw on encrypted communication and CSI
modality-based models, proving that Magmaw is transferable.

While Magmaw demonstrates great success, the perturba-
tion designed in this work needs to be powered by software-
defined radios for flexible generation of the UAPs. Promising
future work is to explore new attack methods, e.g., intelligent
reflecting surfaces [26], to induce small adversarial perturba-
tions. Another area of future research is to establish practical
defense techniques to prevent the proposed attacks.
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APPENDIX A
REAL-WORLD EXPERIMENTAL SETTINGS

We choose a representative indoor environment, as depicted
in Figure 20. In this setting, an unidentified adversary transmits
an adversarial signal from behind a wall in Line-of-Sight
(LoS) between the transmitter (Tx) and receiver (Rx). We also
consider the scenario where multiple users share the spectrum.
When multiple devices try to transmit data simultaneously, the
Wi-Fi protocol allows only one device to transmit to prevent
interference between transmitters [35]. There are two main
anti-collision mechanisms: (1) carrier sensing and (2) collision
avoidance. Before sending the data, a wireless device first
listens to the shared medium to determine whether another
device is sending signals. The transmitter detects the signal
power of the target channel on the shared medium. If the
signal power is greater than a threshold, the transmitter stops
transmitting packets and waits for a certain amount of time
(usually random). The transmitter repeats the above anti-
collision process until it determines that the shared medium is
clear. Magmaw disrupts packets whenever a transmitter sends
data by continuously sending adversarial signals.

AdversaryTX
RX

Wall

RX TX

Fig. 20: Experiment Settings. A scenario where an adversary
sends an adversarial signal from behind a wall in LoS Tx-Rx.
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Fig. 21: Supplementary results when Magmaw uses different
surrogate models for JSCC and downstream tasks.

APPENDIX B
IMPACT OF DIFFERENT SURROGATE MODELS

To rigorously evaluate our attack transferability, we choose
different surrogate models that are less similar to the target
model than the existing surrogate models (depicted in Table III
and Table IV). Table V and Table VI present new surrogate
models for JSCC and downstream classification tasks (VC and
AVE), respectively. Then, we validate the attack transferability
across different modalities. We visualize the degraded perfor-
mance compared to the performance of Magmaw trained with
existing surrogate models. As shown in Figure 21 (a), we see
that Magmaw’s performance is reduced by 4.57% on average.
In particular, the performance degradation is noticeable in the
video modality, which means that the video modality is more
sensitive to gradient alignment with the target model than other
modalities. Figure 21 (b) shows the performance degradation
for each downstream task. As seen, AVE experiences lower
performance degradation as AVE receives image and speech
modalities as inputs.
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TABLE III: Surrogate JSCCs used for Magmaw. We use the n1 ⇒ n2 notation where n1 is the number of layers/kernels for the
corresponding module in the template model and n2 is the altered number of layers/kernels in the new victim model.

M1 M2 M3 M4 M5 M6 M7 M8
Template Model Image JSCC [98] Image JSCC [98] Video JSCC [82] Video JSCC [82] Speech JSCC [88] Speech JSCC [88] Text JSCC [90] Text JSCC [90]

JSCC
Encoder

# Layers 8 ⇒ 6 8 ⇒ 10 6 ⇒ 5 6 ⇒ 8 19 ⇒ 16 19 ⇒ 22 5 ⇒ 6 5 ⇒ 7

# Kernels 64 ⇒ 56 64 ⇒ 72 128 ⇒ 120 128 ⇒ 136 64 ⇒ 56 64 ⇒ 72 256 ⇒ 248 256 ⇒ 264128 ⇒ 120 128 ⇒ 136 192 ⇒ 184 192 ⇒ 200

JSCC
Decoder

# Layers 8 ⇒ 6 8 ⇒ 10 6 ⇒ 5 6 ⇒ 8 19 ⇒ 16 19 ⇒ 22 6 ⇒ 7 6 ⇒ 8

# Kernels 64 ⇒ 56 64 ⇒ 72 128 ⇒ 120 128 ⇒ 136 64 ⇒ 56 64 ⇒ 72 256 ⇒ 248 256 ⇒ 264128 ⇒ 120 128 ⇒ 136 192 ⇒ 184 192 ⇒ 200
Video
Analysis

# Layers — — 10 ⇒ 7 10 ⇒ 13 — — — —
# Kernels — — 96 ⇒ 88 96 ⇒ 104 — — — —

Video
Synthesis

# Layers — — 13 ⇒ 10 13 ⇒ 16 — — — —
# Kernels — — 96 ⇒ 88 96 ⇒ 104 — — — —

TABLE IV: Surrogate downstream models for Magmaw. We use the n1 ⇒ n2 notation where n1 is the number of layers/kernels
for the corresponding module in the template model and n2 is the altered number of layers/kernels in the new victim model.

M1 M2 M3 M4 M5 M6 M7 M8
Template Model I3D [22] I3D [22] SlowFast [30] SlowFast [30] TPN [95] TPN [95] AVE [78] AVE [78]

Classifier # Layers 57 ⇒ 51 57 ⇒ 63 30 ⇒ 26 30 ⇒ 34 17 ⇒ 15 17 ⇒ 19 27 ⇒ 24 27 ⇒ 30
Kernels 64 ⇒ 56 64 ⇒ 72 128 ⇒ 120 128 ⇒ 136 64 ⇒ 56 64 ⇒ 72 64 ⇒ 56 64 ⇒ 72

TABLE V: Different surrogate JSCC models. We use the n1 ⇒ n2 notation where n1 is the number of layers/kernels for the
corresponding module in the template model and n2 is the altered number of layers/kernels in the new victim model.

M1 M2 M3 M4 M5 M6 M7 M8
Template Model Image JSCC [98] Image JSCC [98] Video JSCC [82] Video JSCC [82] Speech JSCC [88] Speech JSCC [88] Text JSCC [90] Text JSCC [90]

JSCC
Encoder

# Layers 8 ⇒ 16 8 ⇒ 20 6 ⇒ 10 6 ⇒ 14 19 ⇒ 11 19 ⇒ 27 5 ⇒ 10 5 ⇒ 14

# Kernels 64 ⇒ 48 64 ⇒ 80 128 ⇒ 108 128 ⇒ 144 64 ⇒ 48 64 ⇒ 80 256 ⇒ 192 256 ⇒ 324128 ⇒ 96 128 ⇒ 144 192 ⇒ 160 192 ⇒ 256

JSCC
Decoder

# Layers 8 ⇒ 16 8 ⇒ 20 6 ⇒ 10 6 ⇒ 14 19 ⇒ 11 19 ⇒ 27 6 ⇒ 10 6 ⇒ 12

# Kernels 64 ⇒ 56 64 ⇒ 72 128 ⇒ 120 128 ⇒ 136 64 ⇒ 56 64 ⇒ 72 256 ⇒ 248 256 ⇒ 264128 ⇒ 120 128 ⇒ 136 192 ⇒ 184 192 ⇒ 200
Video
Analysis

# Layers — — 10 ⇒ 6 10 ⇒ 14 — — — —
# Kernels — — 96 ⇒ 64 96 ⇒ 128 — — — —

Video
Synthesis

# Layers — — 13 ⇒ 8 13 ⇒ 18 — — — —
# Kernels — — 96 ⇒ 72 96 ⇒ 108 — — — —

TABLE VI: Different surrogate downstream ML models. We use the n1 ⇒ n2 notation where n1 is the number of layers/kernels
for the corresponding module in the template model and n2 is the altered number of layers/kernels in the new victim model.

M1 M2 M3 M4 M5 M6 M7 M8
Template Model I3D [22] I3D [22] SlowFast [30] SlowFast [30] TPN [95] TPN [95] AVE [78] AVE [78]

Classifier # Layers 57 ⇒ 37 57 ⇒ 68 30 ⇒ 20 30 ⇒ 40 17 ⇒ 11 17 ⇒ 23 27 ⇒ 20 27 ⇒ 34
Kernels 64 ⇒ 48 64 ⇒ 80 128 ⇒ 112 128 ⇒ 144 64 ⇒ 48 64 ⇒ 80 64 ⇒ 48 64 ⇒ 80
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Fig. 22: Magmaw on wireless systems with different types of constellation mapping schemes (i.e., QPSK, 16-QAM, 64-QAM).
The first and second rows are the results of JSCC and downstream tasks, respectively.
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