

WiTrace: Centimeter-Level Passive Gesture Tracking Using WiFi Signals

Lei Wang*, Ke Sun*, Haipeng Dai*, Alex X. Liu*^, Xiaoyu Wang*

Nanjing University*, Michigan State University^

SECON'18 June 13th, 2018

Motivation

Gesture tracking inspires various applications.

Selecting menu Playing game AR assistance VR assistance

Tracking with WiFi is superior

- Ubiquitous: almost everywhere.
- Non-invasive: not wearing/carrying any devices and protect privacy.
- Not limited: lighting condition or room layout.

Problem Statement

- Can we build a gesture tracking system:
 - Using WiFi signals?
 - With high precision
 - With large working range

CSI Phase Model

Challenge-1:

- What characteristics of WiFi can be leveraged to achieve cm-level tracking precision?
- Solution:
 - CSI phase
- Advantage:
 - CSI provides more information than other WiFi characteristics (RSSI).
 - CSI Phase has higher precision over CSI amplitude.

Illustration of multiple paths

1-D Tracking

Denoise the CSI signal

- Hampel filter
- Average moving filter

Detect the movement

1-D Tracking

Challenge-2:

How to seperate the phase changes caused by moving hands from CSI values due to other environments?

Existing work:

DDBR: low surrounding noise and can hardly detect slow movement.

LEVD: difficult to reliably detect the local maximum and minimum points

1-D Tracking

- Extracting Static Component (ESC):
- Find alternate maximum and minimum points that are lzrger than the emperical threshold.
- STFT to derive the instaneous Doppler frequency shift.
- Remove extreme points smaller than threshold.
- Average adjacent two points to derive the static value.

1-D Tracking

ESC vs. LEVD:

- ESC improves the robustness to small ambinent noise than LEVD
- ESC is more sensitive to small body movement than LEVD

2-D Tracking

Challenge-3:

How to estimate the initial position of hand in 2-D space?

Existing work:

mTrack: discrete beam scanning mechanism to pinpoint the object's initial localization.

LLAP: IDFT to process CFR signals for all subcarriers to estimate the absolute position.

Basic idea:

Two preamble gestures to measure the initial position of hand.

2-D Tracking

Initial Position Estimation

- User push hand along x-axis and y-axis;
- Set the grid (x_i, y_i) as the candidate initial position;
- Calculate the tracking trajectory (x'_i, y'_i) for two receivers based on the initial position and path change for two directions.

2-D Tracking

Initial Position Estimation

- Find N candidate positions (x_i, y_i) which have the N top smallest deviations $|\hat{x}_i - x_i|$ and $|\hat{y}_i - y_i|$ for x-axis and y-axis, respectively.
- Calculate N*N distance matrix Z, where $Z_{i,j} = \sqrt{(x_i^h - x_j^v)^2 + (y_i^h - y_j^v)^2}$
- Find the smallest element in the matrix and average the coordinate value.

2-D Tracking

Initial Position Estimation

2-D Tracking

Successive 2-D tracking

- Estimate the initial hand position
- Solve two equations corresponding to two receivers

- **Trajectory Correction**
 - Kalman filter based on CWPA model

Implementation

Devices

- 3 USRP-N210
- 2 links (1 per receiver)

Parameters:

- 20 MHz bandwith
- 64 CSI subcarriers
- Central frequency at 2.4GHz
- Tx power: 20dBm

2D scenario

1-D tracking performance

- WiTrace achieves average error of 1.46 cm and 4.99 cm with and without the plank.
- WiTrace achieves average error of 3.75 cm and 2.51 cm for omnidirectional antenna and directional antenna.
- ESC achieves better performance than other algorithms.

1-D tracking performance

- WiTrace is robust to background activities which are 2 m away from the receiver for different users.
- WiTrace achieves average tracking error of 6.46 cm and 3.80 cm while pushing hand at different heights and walking around, respectively.

2-D tracking performance

• WiTrace achieves average 3.91 cm estimated error with the template, and average 10.18 cm error without template for intial position estimation.

2-D tracking performance

• WiTrace achieves an average tracking error of 2.09 cm for three shapes' trajectory (i.e., rectangle, triangle, and circle).

Conclusions

- WiTrace achieves high accuracy gesture tracking using WiFi signals.
- We propose a novel scheme based on two preamble gestures to measure the initial position of hand.
- We implement WiTrace on USRP.

