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Ambient temperature distribution monitoring is desired in a variety of real-life applications including indoors temperature
control and building energy management. Traditional temperature sensors have their limitations in the aspects of single
point/item based measurements, slow response time and huge cost for distribution estimation. In this paper, we introduce
VECTOR, a temperature-field monitoring system that achieves high temperature sensing accuracy and fast response time
using commercial sound playing/recording devices. First, our system uses a distributed ranging algorithm to measure the
time-of-flight of multiple sound paths with microsecond resolution. We then propose a dRadon transform algorithm that
reconstructs the temperature distribution from the measured speed of sound along different paths. Our experimental results

show that we can measure the temperature with an error of 0.25°C from single sound path and reconstruct the temperature
distribution at a decimeter-level spatial resolution.
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1 INTRODUCTION

Ambient temperature monitoring is vital to a variety of ubiquitous computing applications, from warehouse
monitoring [1] to building energy management [2] and greenhouse temperature control [3]. With the ever
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increasing user demands, the capability of monitoring the temperature distribution within a given space, e.g., in a
room or in a car, becomes important for the next generation HVAC (Heating, Ventilation, and Air Conditioning)
systems. Instead of a single temperature reading given by traditional temperature sensing systems, temperature
distribution monitoring systems provide fine-grained spatial temperature variation information of the target area.
For warehouse monitoring, temperature requirements for food storage are strict and vary for different types of
food that are stored in different places of the same warehouse, e.g., 32 ~ 40°F (0 ~ 4.4 in Celsius) for refrigerated
storage and 50°F (10°C ) for dry food storage [4]. For indoor air conditioning, precise temperature monitoring
and controlling are vital given that city folk spend 80 ~ 90% of their time indoors [5, 6]. Different users may
have different temperature preferences and improper indoor temperature would cause low productivity and
even sickness [7]. Different parts of the same room may also have different heating conditions due to sunlight
from windows or room occupation. Moreover, air conditioners and electric fans have accounted for 10% of all
global electricity consumption [8]. With precise temperature control, the energy consumption could be reduced
by more than 30% while maintaining the thermal comfort for users [9]. As the premise for precise temperature
distribution control, the capability of monitoring the temperature of different locations in the same space becomes
an important research issue.

Widely used temperature sensors cannot satisfy the demands for temperature distribution monitoring. First,
most temperature sensors only measure the temperature at a single location. To reconstruct the temperature
distribution, we have to densely deploy temperature sensors over the space. While the cost of temperature
sensors are low, the wiring and deployment cost could be far more than the sensor hardware, even for small
spaces such as in the car or in a room. Existing works try to infer the ambient temperature distribution using
physical model [10] with the assumption that temperature sensor’s readings represent the average in a room
or a confined space. Such estimations are unreliable and coarse-grained, since our experiments show that the
temperature difference can be as large as 3°C within the limited space in a car. While infrared cameras can capture
temperature distribution [11], they are still too expensive for environment monitoring applications. Second, most
temperature sensors are based on thermistors or thermocouples, which measures the temperature of the sensor’s
probe instead of the air. Therefore, the material of the sensor need to be heated/cooled when the temperature
changes so that these sensors have large response delays. Such extra delays often lead to difficulties in designing a
stable fine-grained temperature control algorithm. With ubiquitous mobile devices and wireless signals (acoustic
signal and electromagnetic signal including mmWave and Wi-Fi signals) surrounding us, it’s natural to come to
the idea of reusing these existing devices and signals to conduct temperature distribution estimation. However,
most existing works focus on approximating and replacing the traditional temperature sensors with mobile
devices [12] or RFID tags [13, 14] and only measure the temperature for single point or item [15].

In this paper, we develop a system called VECTOR, (Velocity based Temperature-field Monitoring), that can
reconstruct the temperature distribution with a small number of low-cost ubiquitous acoustic devices. Our
design is based on the fact that the speed of sound is physically related to the air temperature along the sound
propagation path. Therefore, we can infer the temperature along a given path using the time-of-flight (ToF)
measurements of sound signals. As illustrated in Fig. 1(a), a pair of acoustic devices can monitor multiple acoustic
paths passing through different regions in a car. Temperature changes on different regions incur different phase
variations determined by the ToF along specific segments of the sound paths. Therefore, we can reconstruct the
temperature distribution using the different phases changes of these line-of-sight (LoS) paths and reflected paths.
In our experiments, VECTOR can measure the temperature along the sound path with an accuracy of 0.25°C
by sensing slight changes in the speed of sound, when the distance between two devices is known. Moreover,
VECTOR incurs minimal hardware cost, as it can reuse the built-in audio systems that are already widely deployed
in indoor environments or in cars. Compared with traditional temperature sensors, the sound-based scheme
directly measures the temperature in the air instead of the temperature of the sensor. Therefore, VECTOR can
detect human perceivable temperature fluctuations within a few seconds, while the latency of traditional sensor
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Fig. 1. Application scenarios.

is at a scale of tens of seconds. The sensitivity of VECTOR allows next-generation HVAC systems to recognize
different types of heat sources and take timely reactions. With an array of distributed acoustic devices, we can
reconstruct the temperature distribution with comparable resolution to infrared cameras, as shown in Fig. 7(c).

We face three key technical challenges when developing VECTOR. The first challenge is to precisely measure
the ToF of the sound signal along each paths. For a 60 cm path, temperature change of 1°C at room temperature
of 25°C vyields a 3.02 us difference in ToF, which is far less than the 20 us sampling interval of widely used
sound sampling frequency of 48 kHz on commercial devices. To achieve precise ToF measurement, we design
an Orthogonal Frequency-Division Multiplexing (OFDM) sensing signal that can measure both the coarse-
grained cross-correlation estimation and the fine-grained phase estimation. Our coarse-grained correlation
scheme measures ToF at the sampling interval level (20us), while fine-grained phase estimation achieves sub-
microsecond time resolution using the phase of the carrier frequency at 19 kHz. By removing the ambiguity of
phase measurement using the coarse-grained correlation results, we can achieve a ToF accuracy of 0.371us, which
is enough to capture temperature change of 0.12°C along a 60 cm path. The second challenge is to reconstruct
the temperature distribution using the ToF measurements. Intuitively, traditional Radon transform measures
the signal attenuation from multiple angles to reconstruct the image of the object [16] and we can reuse it onto
our cause to reconstruct the temperature distribution in the same manner. However, the ToF is reciprocally
related to the speed of the sound and the temperature so that our physical model is different to the traditional
Radon transform. To address this challenge, we propose the dRandon transform algorithm by transforming the
temperature term using Taylor series expansion and use the relative phase changes to reconstruct the temperature
distribution. The third challenge is to reconstruct the temperature distribution with limited acoustic devices. In
real-world scenarios, we cannot get the acoustic paths in all desired angles with a small number of devices. To
address this challenge, we utilize reflected paths to increase the number of phase measurements and train a linear
model to reconstruct the temperature distribution as shown in Fig. 1(a).

Our experimental results show that VECTOR can measure the temperature on the LOS path with an error of
0.25°C and reconstruct the temperature distribution with a decimeter-level spatial resolution. By monitoring
multiple reflection paths in a car, VECTOR can measure distinct temperatures of all four seats with an average
error of 0.44°C using only one pair of devices.

2 MOTIVATION AND APPLICATION SCENARIOS
2.1 Motivation

The motivation of using acoustic signal as the medium of temperature sensing is twofold:
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o Performance: The key performance advantages of acoustic temperature sensing are in its low latency and

2.2

long-range measurement capabilities. First, the speed of acoustic signal is physically determined by the air
temperature, which incurs almost no delay. In many scenarios, air temperature could change quickly due
to air conditioning, sunshine, or workload of servers in data centers, where such change could be captured
by acoustic sensing. In contrast, traditional temperature sensors measure the temperature of their sensor
probes, which could be different from the air temperature due to thermal conduction process. Second,
with acoustic sensing, we can measure the average temperature along a long distance and use distributed
devices to cover a large indoor area. Traditional sensors can only capture the temperature of a given point,
and they are often placed on the wall or near the roof that are far way from the target region.

Cost: Sound devices are ubiquitous in daily life, e.g., voice assistants in home and car, speakers and
microphones for electronic devices, so that acoustic sensing can reach the region of interest (living or
working area) with no extra cost. Deploying traditional temperature sensors to provide acceptable coverage
of the target regions may incur extra cost and inconvenience for daily activities. Therefore, our acoustic
sensing method provides a low-cost solution to upgrade the temperature measurement performance.

Application Scenarios

With the advantages of line coverage, low latency, and low cost, VECTOR can enable the following new
application scenarios:

e In-car temperature sensor: In future smart vehicles, the electronics would make up 35% of a car’s

cost [17], which also make the wiring harness replacement/repair labor and cost skyrocket [18]. VECTOR
can reuse the built-in microphone and speaker in the car to provide fine-grained temperature readings, as
shown in Fig. 1(a). By measuring temperatures of individual seats and react to thermal condition changes
with low-latency, VECTOR can improve the thermal comfort of occupancy with no extra hardware cost.
Furthermore, replacing traditional sensors with VECTOR by existing acoustic hardware can largely reduce
the cost for both manufacturers and customers.

Front-end of data center thermal management system: Data Centers (DCs) consume oceans of energy,
e.g., in 2014, DCs in U.S. consumed 1.8% of country’s electricity consumption and 40% of the energy is used
for temperature management [19]. In Singapore, this ratio was 7% due to the tropical climate [20]. There
are a series of research works in both academia [21-23] and industry [24] in designing the HAVC control
systems in DCs using temperature sensors as the feedback signal. As shown in Fig. 1(b), VECTOR can
provide the air temperature for multiple hot/cold aisles and racks with lower feedback latency and higher
granularity compared with traditional sensors. Generally, feedback with lower latency can reduce the
response time for a control system [25] and given the huge energy consumption of DCs, shorter response
time means saving more energy.

Cooperation with smart home/buildings: Thermal design of smart home/buildings aims at providing
thermal demand flexibility with least energy consumption [26]. Heating power loss coefficient (HPLC)
are used to evaluate the thermal efficient of houses [27] and VECTOR can detect the heating sources
without connection to the heating device and provide the heating periods data required by HPLC [26, 27].
In addition, VECTOR can be easily integrated with existing thermal efficiency systems such as Google Nest
Thermostats [28]. Another important research issue for smart buildings is demand flexibility for thermal
comfort [29-31], where VECTOR can provide temperature management systems with the temperature
distribution using a small number of existing acoustic devices, as shown in Fig. 1(c).
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Fig. 2. Key intermediate steps of signal processing.

3 SIGNAL DESIGN

In the section, we first introduce the physical relationship between temperature and the speed of sound. We
then design an OFDM sound signal to accurately measure the ToF along a sound path to derive the temperature.

3.1 Background

The speed of sound in the air depends on environmental variables such as temperature, humidity, and air
pressure. Within the normal room temperature range, the speed of sound can be approximated as

c=1331.34+0.606 xT m/s, (1)

where the temperature T is in degrees Celsius (°C). While there are better approximations that relate the speed
of sound to both temperature and air pressure [32], we use Eq. (1) as it is accurate enough for our system.

We observe that the speed of sound increases by around 0.2% when the air temperature raises by one degree
Celsius at room temperature. As an example, for two devices that are separated by a distance of 60 cm, the ToF
measurement will decrease by a small amount of 3.02 us based on Eq. (1). Under the widely supported sampling
rate of 48 kHz for sound playing/recording, the interval between consecutive samples is 20.8us, which is far
greater than the small change in ToF. Therefore, traditional correlation-based ranging schemes cannot reliably
detect such small changes in ToF, which is less than the sampling interval. To this end, we use an OFDM modulated
signal to capture both the coarse-grained cross-correlation measure and the fine-grained phase measurement to
detect microsecond-level changes in ToF.

Phase-based ToF measurement provides high-resolution and reliable ToF results. The phase change for a
specific path p, @, is related to the speed of sound by ¢, = —27d,, f./c, where d,, is the length of the path and f;
is the carrier frequency of the signal. In the following discussion, we use the carrier frequency of f. = 19 kHz if
not specified. For two devices that are separated by a distance of 60 cm, the phase change will decrease by an
amount of 0.360 in radian when the temperature raises by one degree at room temperature. Such phase increase
can be reliably measured using OFDM signals [33]. However, as phase changes are limited in the range of 0 ~ 2,
it cannot determine whether the phase changes by 0.5 or 2.57. We use coarse-grained cross-correlation results
to resolve the ambiguity in phase measurements. As a phase change of 2 at 19 kHz carrier is equivalent to
52.6 s in ToF, we can use the cross-correlation result that has a resolution of 20.8 ys to determine how many 2
the phase has been changed. Therefore, we design an OFDM signal that can measure both the phase and the
cross-correlation offset at the same time.
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3.2 Signal Design

Low-end commercial acoustic devices have severe clock drifting problems so that the reference time between
devices could change by more than 50us per second [34]. Such clock drifting leads to errors in ToF measurements
that are far larger than the ToF changes due to temperature difference. Traditional acoustic sensing applications
require a calibration process for each session, i.e., whenever the sound play/recording restarts, to reduce the clock
drift [33, 35, 36]. In stead of asking user to calibrate the devices for each session, we adopt an OFDM full-duplex
signal design to remove the transmitting and receiving delay introduced by low-end commercial devices. When
we have two devices, we ask both devices to transmit and receive sound signals at the same time to perform a
ToF measurement session. Devices can turn-off between sessions to save energy. Our experiments show that our
scheme can output the correct ToF within 0.5 seconds after both devices start sound transmission. Therefore, our
system can work with low-duty cycles in stable environments, e.g., turn on for only 0.5 seconds in every minute.

We choose the Zadoff Chu (ZC) sequence [37] as our baseband signal, which has an ideal cross-correlation
property [38]. The baseband ZC sequence with a length of N is:

+1+2
zeln] = exp [—jFennr1+29)
NZC

: @
where 0 < n < Ny, q is a constant integer and j is the imaginary unit, i.e., j? = —1. N, is the length of sequence,
which determines the bandwidth in the final modulated signal. For example, if we set N, to 653 and the frame
length to 4800 sample points, the bandwidth of the modulated signal would be 653/4800 X 48 = 6.53 kHz under
48 kHz sampling rate. The parameter u determines the correlation property and it should be coprime to N, i.e.,
gcd(Nye,u) = 1.

We use Orthogonal Frequency-Division Multiple Access (OFDMA) scheme to allow both devices to transmit at
the same time and in the same frequency band. Our OFDMA scheme allocates odd subcarriers for one device
and even subcarriers for the other to avoid collision. We also choose two different values of u when generating
baseband ZC sequence to further reduce the interference between the two devices. Specifically, the frequency
domain baseband signals for the two devices are:

ZCoualn] = fft_shift (FFT (exp (— j”“"dd"(:]J’ ! +2q)))) x glnl, 3)
ZCosenln] = fft_shift (FFT (exp (— j ””m"”g\’; +1+29) ))) x g[n+1], (@)

where fft_shift(-) is to switch the order of the sequence’s first half and the second half in frequency domain
to place the zero-frequency point at the center of the sequence for the following modulation process. We set
gln] = %(1 — (=1)"1) to pick out odd/even subcarriers. Note that the odd or even subcarriers are relative to
the central subcarrier (or the subcarrier corresponding to zero-frequency in baseband) instead of the start of
the sequence. Fig. 2(a) shows a sample of ZC,44[n] baseband signal with a 2 kHz bandwidth in the frequency
domain. As the rectangle window in the frequency domain will cause severe side-lobe (from sinc function) in
final time domain Channel Impulse Response (CIR), we add a Hanning window to smooth it (shown in Fig. 2(b)).

3.3 Signal Modulation

With the baseband signal generated, we move the sequence to carrier frequency f. with OFDM modulation
before transmitting. To transform the modulated signal to a real signal, we set the negative frequency of the signal
to be the conjugate counterpart of the positive frequency parts. This modulation process is shown in Algorithm 1
and we use ZCpgsepand to denote both ZC,yy and ZCppe,, who share the same modulation process. Since the two
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signals occupy separate subcarriers in the frequency domain, they can be transmitted simultaneously. Fig. 2(b)
shows the modulated signal in the frequency domain.

Algorithm 1: Transmitting signal generation

Result: The modulated sequence zcy[n] with a length of L and a carrier frequency of f..
1 Generate frequency domain baseband signal ZCpgsepang from Eq. (3) and (4) with a length of N,..
2 Multiply ZCpgsebang With a Hanning window with length N,..
3 Generate a all zero sequence Z\C[n] with a length of L.
4 %[% - (Nzg_l) : % + (Nzg_l)] = Zcbaseband[n]-
s ZC[L—-1:L/2+1] &« ZC [1:L/2—1].
6 Perform IFFT on ZC to the time domain zcr [n].

3.4 Signal Demodulation and ToF Acquisition

On both receiving ends, the received signal with P paths can be modeled as:

P
o T;
zer[n] = > Aie/®izer [n - —], (5)
where zcgr[n] is received signal, A; is attenuation coefficient for path i, ¢; = —2x7; f; is the phase shift caused by

the propagation of path i and 7; is the ToF of path i. To get the absolute phase shift for a given path, we first
perform FFT on the received signal and extract the ZC baseband sequence directly from the received signal.
Then we perform cross-correlation with the conjugate transform of original baseband ZC,44[n] and ZCyep[n]
to get the baseband CIR. We use zero-padding on the baseband CIR to expand the length and increase the range
resolution brought by sample index, e.g.if we pad the baseband to the length 4 the original frame length, the
range difference between each sampling point is 1/48000/4 =~ 5.2 ps.

To acquire the accurate ToF changes for each path, we combine the index of the cross-correlation peak and the
phase of the peak. In the ideal case and without zero-padding, the coarse-grained peak position is expressed as the
integer part of 7; f;, round (7;f;), and the fine-grained phase of the peak is expressed as mod(—2x7;f;, 27r), which
is between 0 and 27z. We can calculate the absolute phase ¢; = —277; fz, which considers whole turns of 2z in
phase, by combining these two measurements. However, there are inevitable unknown delays for the transmitting
and receiving process in low-end commercial devices. Most existing works require user to put devices on a
known position to calibrate and calculate the relative distance [33, 35]. To allow self-calibration without user
intervention, we choose to cancel the unknown delays by obtaining reciprocal measurements from both devices.
For example, when device A receives signal from device B and the phase shift is ¢ps = —27(7a + Tar + T87T) fz,
where 734 is the signal propagation delay that we wish to measure, z4g is the receiving delay for device A
and zpr is the transmitting delay for device B. Similarly, we have ¢a4 = —27(744 + Tar + 7aT) fc When device
A receive its own signal. Device B can also perform two measurements of ¢pap = —27(74p + 78R + Tar) fc and
¢BB = —27 (BB + 78R + 7BT) fo- Therefore, we can use ¢aa + ¢pp — Pap — Pppa = —27(Taa + 8B — TaB — TBA) fe tO
cancel the unknown transmitting and receiving delays [39]. We can further assume the distances between the
speaker and microphone of same device are fixed so that 744 and zpp are known in advance. Therefore, we can
measure the ToF by:

PaA+ $BB — PAB — PBA

2xf;
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If the environment is homogeneous in temperature, using the sum of 745 and 7p4 increases the temperature
sensitivity of the system, because the same temperature changes will cause larger ToF changes in longer distance.
If the environment is not homogeneous in temperature, paths passing along different temperature regions can
help us to reconstruct the temperature distribution discussed in Section 5.

Since we only use half of the baseband frequency bins for each transmitter, the final CIR will have two repeated
peaks, as shown in Fig. 2(c). For the device using the even subcarriers, the DC component is not zero and the
two peaks are completely the same in both phase and amplitude so that we can use either part for position and
phase measurement. For the device using odd subcarriers, the DC component is zero, so the phase for the first
peak and the second peak has a phase difference of 7. To find the right peak, the device using odd subcarriers
first transmits several OFDM frames with full bandwidth to estimate the right delay which, according to our
observation, only incurs hundreds of millisecond delay before returning the right temperature result. And the
detailed demodulation process is shown in Algorithm 2 and the essential steps of whole signal process is shown
in Fig. 2.

Algorithm 2: Received signal demodulation

Result: The interpolated time-domain cir[n].
1 Perform FFT on zcg[n] to get ZCgr[n].

2 CIRbaseband[n] = ZCR[% - % : % + M] X ZCZ

3 Generate an all-zero sequence CIR[n] with length N X L.
4 CIR[% - Nzg_l : % + Nzg_l] < CIRpaseband [n]
5 CIR[n] & fft_shift (CIR[n])

6 Perform IFFT on CIR[n] to the time domain cir[n].

aseband [n] :

3.5 Engineering Details and Discussions
For implementation in real acoustic devices, there are some details and discussions need mentioning:

e Streaming mode. We use the streaming control mode for audio playback and recording. The data is
periodically put into/get from the playing/recording buffers, which means the recording and playback
delays stay the same after the stream starts. Switching from full sequence to odd sequence will not change
these delays during one measurement session. For each temperature measurement session, we restart the
playback/recording, which introduces unknown delays. However, such delays can be canceled using Eq. (6)
so that our ToF results are consistent across different sessions.

o Influence of multipath. Due to the limited bandwidth of commercial acoustic devices, the correlation
peaks corresponding to paths with close ToF (less than 30 ¢m in distance) will merge together to form a
new peak. In this condition, we cannot distinguish neither peaks’ index and phase. Wider bandwidth and
longer frame length can reach a higher path resolution and further mitigate this impact. There are also
solutions to separate the merged paths with deep learning methods, e.g., using Neural Network to get the
right peak location and distance measurement [40, 41]. However, both attempts still cannot separate all the
echoes. As we utilize multiple paths to perform measurement, we choose to ignore paths that are interfered
by nearby multipath and only use those clean paths to reduce the complexity of our system.

e Clock drifts. Different devices with separate clocks will experience clock drifts between each others. The
offset will be added in the unknown transmitting and receiving delays which can be canceled along with
the delays. Our experiment in Section 6.2 shows that our system can stably measure ToF with drifts less
than 0.5 us for 8 hours.
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o Influence of noise and audibility. Normal noise from indoor environments occupies different frequency
band with our system, so the noise will barely affect our system’s performance. And our signal is working
on 17 ~ 21 kHz which is insensitive for most of people and will not affect the daily activities.

e Blocked LOS path. The LOS path could be blocked in certain extreme cases. We can use paths other than
LOS path if the other paths are stable enough, e.g.reflection from a nearby wall. The length of the non-LOS
path can be estimated with one extra input of temperature and it’s an one-time calibration, see details in
Section 5.

3.6 Sound-based Temperature Sensing

We use a basic two-device setup to illustrate the fundamentals of sound-based temperature sensing. In this
scenario, we separate two devices by a fixed known distance and measure the ToF, i.e., zag + 74 in Eq. (6), to
derive the temperature. The number of full wave cycles can be determined by the coarse-grained cross-correlation
and the decimal part of the cycles can be determined by the fine-grained phase measurement. The wavelength A,
can be derived by dividing the known distance by the number of wave cycles. We can then calculate the speed of
sound by ¢ = f;A. and use Eq. (1) to get the temperature. Note that the distance between devices can either be
measured in advance, or determined after deployment by calibrating the ToF under a known temperature.

Sound-based temperature sensing is more sensitive than traditional temperature sensors such as thermistors or
thermocouples. Acoustic sensing directly measures the temperature of the air, while traditional sensors measure
the temperature of the probe that needs to be heated or cooled by surrounding air when the air temperature
changes. To evaluate the key features of sound-based temperature sensing, we perform an experiment in a
room with controlled temperature changes. Fig. 3 shows the measurements of VECTOR and a traditional Bosch
BME280 temperature sensor [42] within a period of two hours. We turned on the air conditioner to heat the
room at ¢t = 500 seconds, turned it off and opened the window at 2760 seconds, and closed the window at 4270
seconds. Note that we carefully avoided direct air flows towards the sound path in these experiments so that
these temperature fluctuations are not caused by air flows. We have three key observations on the result shown
in Fig. 3.

o For stable environments, the difference between the two temperature measurements is smaller than 0.5°C. For
example, before we start the air conditioner and after we close the window, the sound-based temperature
measurement is stable and very close to the readings of BME280 sensor. Therefore, our system can provide
accurate temperature readings that are comparable to commercial sensors.

o We observe that VECTOR responses to temperature changes much faster than traditional sensors. This can be
seen from the differences in the two temperature curves when we turn on/off the heating. For example,
when we stopped heating, the measurement of VECTOR drops by 0.5°C within 5 seconds, while BME280
takes 30 seconds to detect the same temperature change. The output of sound-based sensing agrees with
human perceptions, since human beings could notice temperature change caused by such events within
seconds. The low latency feedback provided by VECTOR could potentially improve the performance of
control algorithms in HVAC systems. We further study this phenomenon with detailed experiments in
Section 6.6.

o When the temperature is unstable, VECTOR observes larger short-term variance in the measurements. For
example, when the air conditioner is on or the window is opening, the sound-based measurements have
higher fluctuation than the BME280 sensor’s readings as shown in Fig. 3. This phenomenon is consistent with
our daily experience. When the air conditioner is on, human can perceive the fluctuation of temperatures
due to the cool/warm air from the air-conditioner, which is quite different to natural stable environments.
However, traditional sensors only perceive smooth temperature changes as shown by Fig. 3. We can leverage
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Fig. 3. Preliminary experiment of temperature sensing.

this new capability provided by VECTOR to capture human perceived-temperature for better thermal
comfort experience, or to identify the heating source as discussed in Section 6.6.

In our extensive experiments, we also observe that when traditional temperature sensors are exposed to the
radiation heating source closely (30 ~ 50cm) or sunlight, the temperature reading will exhibit a large mismatch
with the air temperature felt by human. For example, the measured ground temperature could be much higher
than air temperature in summer. This might be caused by the different thermal transmission types, e.g., radiation
in air and heat conduction in the solid sensor probe. If we want to get the air temperature in these scenarios, the
sound-based temperature sensing is much more reliable than the probe-based temperature sensing.

4 TEMPERATURE DISTRIBUTION RECONSTRUCTION

As stated in the previous sections, the estimation of air temperature distribution is quite important in many
practical scenarios. However, as far as we know, there are few works to measure the actual air temperature
distribution. Based on our preliminary experiments of sound-based temperature sensing, we can extend the
single path temperature measurements to temperature distribution estimation, using the fact that we are actually
measuring the temperature’s harmonic mean along the propagation path. In this section, we first introduce the
problem of estimating the air temperature distribution and propose a dRadon transform algorithm to solve this
problem.

4.1 Problem Statements

We consider the temperature distribution estimation problem in the 2-D scenario. Suppose that there is a target
area where each point (x, y) has a temperature of T(x, y), where x and y are Cartesian coordinates. Hence, based
on the Eq. (1), the sound speed at the point (x, y) is

v(x,y) = vy +0.606(T(x,y) — Tp), (7)

where v, is the sound speed at a reference temperature Ty, e.g., 0°C.
In our system, we can measure the ToF 7 along the given path using cross-correlation and signal phases. For a
path L that passes through different points in the target area, the ToF along the path is a line integral:

di 1 1

L _ o

= '/Lv(x,y)_‘/LUOl_'_wdl, (®)
Yo
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where the differential element d! is along the signal propagation path L. Therefore, we need to infer the
temperature distribution T(x,y) using the ToF along different paths L;. At first glance, this problem is quite
similar to the medical imaging problem tackled with Radon transform. However, traditional Radon transform
cannot be directly applied to our problem.

4.2 Background of Radon Transform

Radon Transform is a widely used technology on medical image reconstruction [16]. The basic principle of
imaging with radon transform is collecting the projection data p(s, 0) at different locations s on the detector
from different angles 6 and use back-projection algorithm to transform the data from (s, 6) plane into the (x, y)
plane. We briefly introduce parallel-beam scenario and demonstrate the difficulties of directly applying Radon
Transform.

As shown in Fig. 4, if the target object has a density function of f(x, y), we project parallel beam at a given
angle 0 with different s onto the object. At the detector side, the projection (ray sum/line integral) function can
be expressed as

p(s.0) = /L flry)dl, )

where L is the projection line expressed as L = x cos 6 +y sin 8 —s and the s axis is along the detector, as illustrated
in Fig. 4. We repeat the process in every angle 6 and collect the integral result p(s, 8), which is usually called
sinogram, for every position on the detector. In the back-projection process, the p(s, 0) is transferred into the
Cartesian coordinate (x,y) or polar coordinate (r, ¢) with Fourier Transform [16].

While the Radon Transform has a similar form as our problem (Equation (8) and (9) if we make f(x,y) =
1/v(x,y)), directly applying the Radon Transform cannot reliably reconstruct the temperature field. We use a
simulation to illustrate the difficulties in applying Random Transform for our problem. Fig. 5 shows the simulation
setting, where we use a speaker as the signal source and 20 microphones as the detectors. We calculate the ToF
result 7 at every microphone and for different angle 6 in the simulation. The simulated temperature field has
three parts: the dark red square in the center is hot area with temperature 50°C, the temperature in the circle
with light red area is 20°C and the white area out of the target area has 0°C temperature.
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e The projection function is mismatched. Radon Transform assumes the density/distribution of the
object accumulate along the projection. However, we can only measure the ToF that has an integral form of

A U(ily) . The object function v(x, y) is on the denominator and a direct estimation of f(x,y) = 1/v(x,y)
is infeasible due to the non-linearity of f(x,y). Fig. 6(a) shows the simulation result when we directly
estimate f(x,y) = 1/v(x,y) (perform back-projection on the ToF measurements ) and then take the
reciprocal of the result. The distribution information is completely lost in this case.

e We can only perform the scan on limited angles. We use a limited number of acoustic devices and
can only rotate the device for a limited discrete set of angles in our scenario. The limited angle resolution
reduces the accuracy of distribution estimation. Fig. 6(b) shows the simulation result where we measure
the ToF for 18 different angels and reconstruct with dRadon transform, which has phantom lines in the
result. Therefore, we need to perform interpolation on the sinogram to improve the accuracy, as shown in
Fig. 6(c).

T =

4.3 dRadon Transform Algorithm

We design the dRadon transform algorithm based on traditional Radon transform to reconstruct the temperature
distribution.

4.3.1 Taylor Series Approximation. We leverage Taylor series to covert the line integral into a linear function of
the temperature. With the Taylor geometric series ﬁ = Y i2o(—=x), we can replace the second fraction term in
Eq. (8) with:

0.606(T (x, y) — To)) _ i (_0.606(T(x, y) —To) )i | (10)

(<) Yo

1/ (1 +
i=0
Within the range of room temperature, the temperature is not deviated from T; by a large value. Thus, the ratio
of speed change, (0.606(T (x,y) — Tp))/vo, is small, since v, is around 340 m/s and 0.606(T(x,y) — Tp) is often
under 10 m/s for indoor air temperature. So, we can ignore higher order terms in the Taylor series and get:

L [L (1 _0.606(T(x,y) — To)) dl.
Yo

(11)

L %
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To eliminate the constant term in Eq. (11), we can measure the initial ToF T(])“ = fL dl/vg in a homogeneous
temperature flied of T. Therefore, we have

0.606(T - T
TL_T(I; _ _/ ((xz,y) O)dl
L [
0.606
= —— /Td(x,y) dl. (12)
Y, L

We call this differential form of temperature changes as the dRadon transform, which has a similar formulation
as the original Radon transform. The dRadon transform directly relates the temperature distribution to the ToF
changes that can be captured with multiple microphones in a flat or curve shaped array. Rotating the microphone
array by different angles of 6, the microphone array can capture the ToF difference measured on microphone
with different values of s on each angle for the dRadon transformation. The reference ToF measurement 7. is an
one-time calibration and can be determined once the array is manufactured.

4.3.2 Interpolation and filter on sinogram. Consider the case that we scan on m angles with a microphone array
with n elements. After the scan, we can get measurements on m X n paths and generate a sinogram as m X n
matrix. We first use a moving average filter on it to remove the jitters. We then perform interpolation along the
angles axis m to improve the accuracy of the dRadon transform.

4.4 Proof of Concept Experiment

To verify the feasibility of our dRadon algorithm, we perform an experiment on a rotating platform as shown
in Fig.7(a). We measure the paths between a mobile phone (Samsung S7) and a distributed microphone array (20
microphones along a line of 95 cm using five Raspberry Pis, each with a 4-mic array). We rotate both devices by
27t with a step size of /18 to measure the ToF of all paths at different rotation angles. Therefore, we gather ToF
on 36 X 20 paths and we smooth the sinogram with a 3 X 3 moving average filter and interpolate the angles axis
from 36 to 360 different angles. We then perform dRadon transformation to reconstruct the temperature field in a
40 X 40 cm? target area at the center of the platform. To generate a stable temperature field, we placed two heating
pads with size of 10 X 10 cm? and 10 X 20 cm? in the target area. Fig 7(c) shows that the reconstructed temperature
map is similar to the ground truth in Fig. 7(b) obtained through the FLIR infrared camera. Therefore, our ToF
measurements are accurate enough to reconstruct the temperature distribution at a decimeter-level resolution.
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Fig. 8. Experiments on dRadon algorithm.

We further use arrays with 12 microphones and 20 microphones to evaluate the dRadon algorithm. Fig. 8(a)
and 8(b) shows the result of 12-microphone array’s reconstruction result for a 10 X 10cm? heating pad and
20-microphone array’s result for a 20 X 20cm?® heating pad. Array with smaller number of microphones will
reduce the size of the imaging area and the resolution of the reconstruction. For example, with 12-microphones,
we can only provide image for the target area with a size of 20 X 20 cm?.

4.5 Discussion

e Ground truth: In this experiment, we compare the result with the infrared camera images. However, the
temperature readings of the infrared camera cannot serve as the ground truth for the air temperature. The
infrared camera measures the temperature of the object instead of air, e.g., the surface of the heating pad
is around 150°C and the air temperature is just around 30 ~ 40°C. To the best of our knowledge, there is
no COTS device that can measure the air temperature distribution with this high resolution. Therefore,
our experiments only show the relative spacial temperature distribution that can be achieved by acoustic
sensing.

e Real-world scenarios: In most of real-world scenarios, we cannot rotate the acoustic devices to generate
multiple LOS paths measurements. With adequate number of microphones and speakers densely deployed
on every angle (e.g., separated by 30°), it is possible to perform reconstruction without the rotation process.
Such deployment requires a fixed number of devices at desired angles and can fit well in scenarios for a
small room or a baby crib. However, even several extra acoustic devices could incur formidable cost when
the wiring cost is non-negligible, e.g.in a car. Therefore, we design a multipath based solution as discussed
in Section 5.

e Moving objects: We do not consider the scenario when the hot/cold area moves during the distribution
estimating process. If the object movement changes the temperature distribution in the target area, the
estimation result could contain large errors because the data in different angles are collected in a time-
multiplex way. However, for fixed deployments, the measurement duration could be shorter than the
temperature distribution change periods.
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5 RECONSTRUCTION WITH REFLECTIONS

Besides using densely deployed acoustic devices, we can use the multipath effect to get a large number of ToF
measurements as illustrated in Fig 1(a).

5.1 Ally with Multipaths

As mentioned in Eq. (5), one frame of CIR contains many paths that are reflection from nearby walls or static
objects. Given most of these paths are static, we can leverage their ToF to capture more information about the
temperature distribution in the environment. To verify the stability of these multipaths, we place the devices at
locations indicated by Fig. 13(c) and near the roof of the car so that the LOS path is not blocked. We use a longer
frame length of 7680 samples to increase the unambiguous range to 13.6 meters so that we can capture reflection
paths with longer distances. Fig. 9 shows the peaks for the LOS as well as reflected paths observed by Device A
in Fig. 1(a) on different days under different temperature. Given an OFDM bandwidth of 4 kHz, our signal can
separate paths that are more than 30 cm away in the CIR. In this scenario, we can clearly identify at least four
paths in the CIR and match these paths at different temperatures. Thus, we can measure the length of all these
paths in one frame data at the same time.

We treat the problem as a continuous integral problem in Section 4 which is accurate yet hard to verify, since
as far as we know, there is no existing COTS sensor that can provide air temperature distribution ground truth
with such high resolution. Besides, in real-world, we may care more about the temperature in some specific cells,
e.g.each seat in a car or in a conference room. The difference is that each cell is big, the time of sound signal
traveling in it is no longer the same and the problem becomes a discrete problem. Assume that each cell in the
sensing environment has a different temperature of T;. In this case, the line integral in Eq. (12) changes to a
weighted summation:

0.606
TL - T(]; =T Z WlL(Tl - T0)> (13)
0 i

0

where the weights w! are the length of the given path L passing through the region of cell i. When we have
measurements on multiple paths, we can represent the ToF as a vector 7 and the temperature in different cells as
a vector T. The relationship between temperature and the ToF can be written as:

0.606
2
Y%

W(T - T), (14)

T—Ty=—
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where the weights W is an m X n matrix with each entry w’, 1 <L <m,1 < i < s, representing the length of a
given path L passing through the region of cell i, when we have n cells and m paths. We can then determine T by

2

)
T = —X WI9(r-15) + T,
oe0s" (T +To
2 2
Y% Y
= - WY r+ W9t + Ty, (15)
0.606 0.606
coef ficient intercept

where WY is the generalized inverse of W. As we can observe from Fig. 1(a), different paths pass through the
cells, i.e., the four seats, in different ways. Therefore, they have different weights of wl.L. If we know the weights,
we can directly get temperature value in each cell. However, it’s hard to accurately measure the length of all
those reflection paths pass through each cell, we need a training stage to determine the weights w of each path.
We solve this linear regression problem by the least absolute shrinkage and selection operator (LASSO) method
or Ridge regression depending on the scenarios. In the training stage, we collect the ground truth temperature
T, from sensors on each cell and the ToF measurements 7,, from our system. We apply a Kalman Filter to
smooth the distance measurements before solving the linear regression problem. The weights W and all the other
parameters (o and Ty) are constants when both Device A and B are fixed. Therefore, we only need to perform
the training process once to determine these weights by mounting temperature sensors on each seat during the
car manufacture process.

Although using multipaths to reconstruct the temperature distribution seems quite different from the continuous
scenario, they are actually the same in the basic principle: analyzing different paths that acoustic signal passes
and estimating the temperature in different region through sound speed. And when the number of paths are
sufficient and the cell is small enough, the resolution of the discrete problem can match the continuous one.
Besides, this solution can also be extended to 3-D scenarios.

5.2 Discussion

e Number of available paths. Lack of usable paths will make the problem an under-determined problem.
Fortunately, multipaths in indoor environments are often rich enough to support our solution, e.g.we use a
4-mic array as Device A in Fig. 1(a) to measure ToF and can get at least m = 4 X 4 = 16 paths. Thus, the
number of paths is much larger than the number of cells and the linear equations are often over-determined.

e In presence of human or obstacles. If there are human or other obstacles in the environments after the
calibration, they may block some of the paths and cause CIR fluctuation when they are moving around
measurement paths. This will not affect the overall performance of our system since we can still leverage
the unchanged paths in the environment. Multiple reflectors are helpful for our solution, because different
signal paths may be more likely to go through different cells and contain more information that can be
captured at the same time.

e Acoustic devices. Our solution can use widely deployed sound-devices in the environment, including TV
sets, voice assistants, car speakers, and other smart-home appliances. We do not require the device to be
able to play and record sound signals at the same time. Even if the device can only record sound, it can
contribute to the number of sound paths given the location of it is known (as we do in Section 4). Our
solution can utilize mobile phones for measurements. However, in general, mobile phones do not have
fixed locations and they are not suitable for long-term sensing tasks [43].
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6 EVALUATIONS

6.1 Implementation

We have implemented VECTOR across different platforms including iOS, Android, and desktop operation
systems. We have developed Android and iOS standalone applications that perform the signal processing and
temperature estimating in real-time. For PCs or Raspberry Pi, we develop standalone Python version to do the
same processing and a MATLAB server program to receive, visualize and process data from resource extremely
limited devices. VECTOR operates at a central frequency of 19 kHz, occupies a bandwidth of 4 kHz (with
N, = 163), and uses a frame length of 40 ms if not specified. The devices with different operating systems are
compatible with each other if we use the same parameters for signal transmitting. For temperature sensing
evaluations, we use two smartphones (two Samsung Galaxy S7 or two iPhone 6s) to estimate the temperature. For
temperature distribution evaluation, we use smartphones and Raspberry Pis equipped with 4-microphones array
to increase the receiving channel and get the measurement. To collect the data and analyze the result, we playback
and record sound data simultaneously on the mobile phones/Raspberry Pis and transmit the recorded data to
MATLAB via network in real-time. The temperature sensors are mounted on Raspberry Pi and the temperature
ground truth is transmitted to the same PC. The PC records the timestamps of the two types of data by the time
the socket package arrives and use the timestamps to synchronize to types of data, the network delay is usually
shorter than the frame duration (40 ms) and is negligible.

6.2 Evaluation on ToF Measurement

VECTOR can stably measure the ToF for distributed devices with an average error of 0.371 pus for 8 consecutive
hours. As VECTOR determines temperature through ToF measurement, we evaluate the ToF accuracy in an
indoor environment with two identical smartphones (Samsung S7). We collect the temperature ground truth with
BME280 temperature sensor, who has a temperature resolution of 0.01°C and an accuracy of 0.5°C [42] and the
distance between two phones is fixed to 50 cm using a vernier. We calibrate the distance with the temperature
sensor and keep the temperature of the room stable during the experiments. We then turn on VECTOR to
continuously collect the ToF result for 8 hours. Fig. 10 shows the result of the ToF measurements within each
hour, it shows that the result does not experience degradation along with time. The error variation between hours
is mainly caused by the small temperature fluctuation, which is within 1°C during the experiments (between
21.6°C and 22.4°C). The average and 75th percentile errors for the 8 hours’ measurements are 0.371 and 0.509 ps
respectively. Our clock drift is orders of magnitude smaller than existing systems, e.g., around 7 ps drift within
ten minutes.
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6.3 Evaluation on Temperature Sensing

VECTOR achieves an average temperature error of less than 0.25°C in different static environments when compared
with commercial temperature sensors. To evaluate the temperature sensing capability of VECTOR, we place two
Samsung S7 at a fixed distance on a table and measure the temperature along the LOS path. If not specified, we
keep the doors and windows of the room closed and avoid any human perceivable air flows in the testing area.
Fig. 11(a) shows the error distribution of VECTOR, where the ground truth is provided by a BME280 sensor. We
repeat the experiments for more than 6,000 times in a period of three months by restarting VECTOR in different
indoor environments, including labs, meeting rooms, and apartments with room temperatures in the range of
7 ~ 28°C. The average temperature error of VECTOR is smaller than 0.25°C and the maximum error is less than
0.9°C under different room temperatures. Fig. 11(b) shows that VECTOR can reliably measure the temperature
when the devices are separated by 30 cm to 150 cm with room temperatures of 14 ~ 16°C.

6.4 Evaluation on Temperature Distribution Estimating

6.4.1 VECTOR achieves an average temperature error of 0.48°C for three seats along a table with four distributed
devices (two transmitters and two receivers). In this experiment, we use four separated devices to reconstruct the
temperature distribution for three seats along the same table. Fig. 12(a) shows the deployment of this experiment,
we use two mobile phones as transmitters, two microphone arrays as receivers and three BME280 sensors as
ground truth. For each array, we use two microphones and we can get 2 X 2 = 4 LOS paths. We create temperature
difference with a radiation heater and heat one seat a time, we collect the temperature and distance data for 66
minutes in total. In this experiment, we shuffle the data, train the linear model with random selected 1/10 of the
data, and validate with the rest of the data. We repeat this process for 10 times for cross-validation and put the
result together. We solve the linear function with Ridge Regression because the number of parameters is only
slight more than the number of targets. The temperature range is 15.8°C ~ 23.4°C, consisting of normal indoor
temperature (16 ~ 18°C) and heated temperature (> 20°C). Fig. 12(b) shows the temperature result for three seats,
VECTOR achieves an average temperature errors of 0.48°C. Fig. 12(c) shows the temperature difference between
each seat and the average temperature (T; — > ;{T;}/4) where the average error for temperature difference is
0.43°C. Compared with synchronized devices, separated COTS acoustic devices are cheaper in price and worse in
frequency offset. This experiment indicates that VECTOR can work with different kinds of device combinations.

6.4.2 VECTOR achieves an average temperature error of 0.44° C for temperature reconstruction of four seats in two
different cars with one pair of transceivers. In this experiment, we use longer frame with length of 7680 samples
(160 ms) to increase the unambiguous range to 13.6 meters and capture reflection paths with longer distances.
We mount VECTOR and four BME280 sensors on two different empty cars shown in Fig. 13 and collect the
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Fig. 14. Temperature distribution estimating in cars.

distance and temperature data. For distance data, we choose the reflection peaks with height higher than 85%
of LOS peak to calculate the distance as feature candidates. For car 1, we collect the data for nine days in a
period of thirteen days with a total duration of 25 hours; and for car 2, we collect the data for seven days in a
period of eleven days with a total duration of 17 hours. Within each day, we collect data for at least two hours in
different time periods including noon, afternoon, and night and under different weather conditions including
sunny, cloudy, rainy and snowy. We cover different parts of the car to create temperature differences among seats
in sunny days. The temperature range for car 1 and car 2 are 8.1°C ~ 46.2°C and —1.9°C ~ 11.9°C, respectively.
Although the device position settings are similar in the two cars, due to the difference of structure and interior
decoration, the reflection patterns are largely different which proves that our algorithm can generalize in different
reflection conditions. Fig. 13(c) shows the device setting in car 1. We use data from three randomly picked days
(e.g., day 1, 3, 4) to train the paths’ weight W and validate with data from the rest days (e.g., day 2, 5, 6, 7, 8, 9),
we repeat this process for ten times for cross validation and record all the errors as the result. Fig. 14(a) shows
the temperature error for four seats derived by LASSO algorithm and Fig. 14(b) shows the temperature error
distribution in different temperature interval. We observe that VECTOR achieves an average error of 0.59°C for
car 1 and 0.29°C for car 2, and achieves total mean errors of 0.44°C. The estimation error increases to around 2°C
at high temperatures. This is possibly due to the mobile phone is overheated when temperature is higher than
30°C. Fig. 14(c) shows the temperature difference between each seat and the average temperature, T; — X ;{T;}/4.
When temperatures on seats are differed by —3 ~ 3°C, VECTOR can measure temperature difference with an
average error of 0.57°C. This indicates that VECTOR can reliably detect the temperature differences within a car.
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Fig. 15. Experiments on multipaths.

6.5 Evaluation on Robustness

6.5.1 VECTOR is robust to multipaths with distance > 30 cm away from LOS.. We run VECTOR in presence of
multipaths to evaluate the impact of multipaths. We place two mobile phones at a distance of 50 cm on a table and
create multipath conditions of four different types: no multipath, at 25cm, at 30cm by placing a metal plate, and a
people walking around 50 cm away from LOS. The multipaths distance is calculated as dy fiecrion — dios as shown
in Fig. 15(a). We place the steel plate after we calibrate the system because our calibration process would cancel
the impact of the multipath, including reflections from the surface of the table as well as the structure-borne sound
of the table and the devices. The 75 percentile temperature errors of these four types of multipath conditions
are 0.13°C, 2.56°C, 0.16°C, and 0.25°C, as shown in Fig. 15(b). The detailed correlation peaks of multipath are
shown in Fig. 15(c). Multipaths will create new peaks in the CIR whose positions are related to the distance, if the
distance is longer than 30 cm, the new peaks will not affect the LOS peak. If the distance is less than 30 cm, e.g.,
25 cm, the two peaks merge together and the ToF result is largely affected. The moving obstacles slightly affect
the result due to the complex reflection patterns in certain frames even if they are 50 cm away from the LOS
path. The range resolution can be improved by using longer frames with wider bandwidth and in-practice we
can detect and remove paths that have close obstacles.

6.5.2 VECTOR is robust to different device orientations. We place the two mobile phones in different orientations
shown as Fig. 16(a) to reveal the influence of devices’ relative orientation. The distance between devices is around
50 cm. Since the propagation distances between devices in this scenario are hard to measure, we perform an
one-time calibration with one frame of ToF and temperature sensor’s reading. After the one-time calibration,
as long the devices are fixed, no extra process is needed. This experiment is conduct in indoor environment
with temperature around 23 ~ 25°C. We collect the ground truth with BME280 temperature sensors. In every
orientation setting, we collect the temperature data for 10 minutes for comparison. Fig. 16(b) shows the result of
this experiment and VECTOR is robust to different device orientation setting. While the propagation of ultrasound
is more directional than audible sound, it could still provide an acceptable SNR to support our application even
in the 90° orientation setting. This experiment also demonstrates that VECTOR does not have strict device
deployment requirements, e.g., devices have to face each other.

6.5.3 VECTOR is robust to audible noise and high frequency continuous wave noise. We expose VECTOR under
different noises to analyze the impact of noise. We run VECTOR under these noises for a duration of 10 minutes.
These noises exist in both calibration and processing stage. The audible noise’s sound level is measured with a
sound level meter in unit dBA. We play the high-frequency noises (continuous wave signal at 19 kHz and ZC
sequence in the same frequency band with different parameters) with another mobile phone and the level of
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them cannot be measured by the sound level meter. Fig. 17 shows the result of this experiment. For the five
different situations (normal, music, speech, continuous wave, and another ZC), VECTOR achieves a 75 percentile
temperature errors of 0.11, 0.07, 0.08, 0.17, and 4.87°C. According to our observation, high frequency continuous
wave will add an constant value on the CIR’s magnitude and the influence can be canceled by the ToF calculation
process. Moreover, aother ZC sequence will cause some noisy peaks on the CIR and affect the phase and position
of the LOS peak. This experiment shows that VECTOR can stay robust under audible environmental noises and
high-frequency continuous wave noise. It’s noted that if the noise interference’s level is too high and makes the
signal clipped on the recording side, the result will be greatly affected no matter what frequency band the noise
uses.

6.6 Enhancements Compared with Traditional Sensors

6.6.1 VECTOR is sensitive enough to recognize different types of heat sources with an accuracy higher than 90%.
We collected temperature measurements for three different scenarios: normal room without heating, heated by
air conditioners and radiator heater, with monitoring duration of 166.7, 221.4, and 292.0 minutes, respectively.
We observe that the normal indoor environment has a small temperature standard deviation of 0.10°C within a
time window of 30 seconds, but air conditioners and heaters introduce higher variations of 0.28°C and 0.18°C.
While both are heating devices, the temperature variation patterns of the air conditioner and the heater are also
different. Fig. 18 shows the amplitude of low-frequency and high-frequency variation in different environments
obtained by performing FFT over time windows with a length of 100 seconds. We observe that different types of
heating devices are clearly separable using the spectrum of temperature variations. With a decision tree algorithm
based on the spectrum features, we can recognize the normal environment, the air conditioner, and the radiator
heater with an accuracy of 96.0%, 91.8%, and 92.8%, respectively.

6.6.2 VECTOR detects environment changes by 18.39 seconds faster than the traditional temperature sensors on
average. We use a commercial heating pad to heat the air and use a BME280 sensor and VECTOR to measure the
temperature changes. We first put VECTOR and a BME280 sensor in the same normal indoor environment and
then we start the heating pad to heat the air around the sensors. The heating pad is connected to a controlling
module provided by the manufacturer and will periodically turn on and off to match a target temperature. The
data for VECTOR and BME280 sensor are synchronized and we capture the ground truth of on-off events using a
camera. We repeat this experiment for 20 times and each experiment lasts for half an hour (including heating and
cooling down). Fig. 19(a) shows the time that VECTOR and BME280 sensor first detect the switch off (reach the
temperature measurement’s first turning point). The average detection time for VECTOR and BME280 sensor are
2.56 s and 20.95 s respectively. Fig. 19(b) shows an example of the heating process, where we can clearly observe
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the lag of traditional BME280 sensors. We have experimented on other traditional temperature sensors, such as
BME380, and the results are similar. The timely feedback can largely increase the performance of temperature
control system.

6.7 System Performance and User Study

6.7.1 VECTOR can process the audio signal in real-time on commercial iOS, Android mobile phones and Raspberry
Pi. We measure the signal processing time for one frame acoustic signal (40 ms) on different platform including
iPhone 6S, Samsung S7, and Raspberry Pi 3B+. Signal processing includes signal segmenting the raw signal,
demodulation, phase calculation, and temperature estimation. Table 1 shows the processing time for different
platforms. VECTOR on iOS is implemented with the vDSP acceleration framework and takes a negligible 0.494 ms
processing delay on average. We use Java Native Interface (JNI) on Android mixed with C for core functions to
process the signal. The implementation on Android can meet the real-time timing requirement but has an order
of magnitude delay than the vDSP version. Our system can also process the data in real-time on resource-limited
device like Raspberry Pi using Numpy in Python. In general, our design is light-weighted and can be deployed on
various hardware platforms used in smart-home devices.

6.7.2 VECTOR'’s transmitting signal can be barely heard by users. We invite 30 volunteers (including 18 males
and 12 females) from age 22 to 49 to test the audibility of the transmitting signal on their own mobile devices or
earphones with maximum volume. Table 2 shows the result of this experiment. Three out of 18 male volunteers
can hear the signal and for female volunteers, one out of 12 can hear it. Furthermore, the volunteers who can
hear it described that the sound can only be heard with concentration. Therefore, the sound signal played by our
system would not affect people’s daily activities. We can also reduce the sound level or use better playing devices
that support higher frequency bands to make our signal fully inaudible.

Table 1. Processing time on different devices. Table 2. Audibility to users.
Device Signal processing (ms) Gender | Audible/total number
iPhone 6S 0.494 £ 0.476 Male 3/18
Samsung S7 10.841 + 3.683 Female 1/12
Raspberry Pi 3B+ 16.731 + 2.154

7 LIMITATIONS AND DISCUSSIONS

There are five limitations in current design of VECTOR as listed below.
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Calibration/training stage. For temperature sensing, the calibration stage measures the initial distance
between two or more devices. The distances sometimes are hard to measure when the devices are not facing
each other. Therefore, our approach is fixing the devices, getting the distance measurements and calculating the
actual distance with an extra temperature sensor’s reading. This process is simple and only takes few seconds
to conduct during the deployment phase. We have one assumption about this stage that the environment is
under full control which means there is no interference including high frequency wideband noise and/or moving
obstacles close to the LOS path. When it comes to temperature distribution estimation with reflections, we have
to create temperature difference across cells to learn the reflection pattern of the environment in the training
stage. This can be done in the manufacture stage of the car or deployment stage in the room with temperature
sensor and heater. That being said, it is still laborsome to create different temperature distributions, e.g., in our
evaluations, we leverage sun’s heat and cover the car to create temperature difference between seats across days.
Estimating the reflection pattern efficiently during the calibration stage is still challenging.

Multipath and other interference. As shown in Section 6.5, the close multipath (static or moving) and
high-frequency wideband signal will affect the performance and this is inevitable in home/car setting. There
might be two approaches to solve this problem. The first possible solution is using deep learning method to
cancel the impact of multipaths and noises as in [41]. However, existing deep learning systems only solve the
distance with a single path for static obstacles. The second possible solution is to detect these interference and
only perform temperature estimation when there is no interference or with unaffected paths. Whether the paths
are affected can be detected by the shape of CIR, SNR, and distributions of the distance of the given path.

Parameters. The reflection weight W in Equation 15 are tightly coupled with the environment. According to
our theoretical model, the weight W indicates how one acoustic signal path (LOS or reflection path) propagates
through each cell and it’s highly related to the environment, which means we need to re-estimate the weight
when transferring to a new environment.

Impact of air-flow and wind. We conduct our evaluations avoiding strong air-flow and wind because they
will affect the sound speed and ToF measurement. This is necessary in the heat source detection experiment,
because we want to demonstrate that VECTOR can recognize heat source with pure temperature changing
patterns instead of air-flow caused patterns. According to our observation, the impact of wind on ToF changes is
largely different from temperature caused changes and physical/theoretical model can be helpful to analyze this
phenomenon and cancel their impact.

Temperature distribution estimation with multipath. To estimate the temperature distribution with
multipath, we solve the relationship between paths and cells with linear regression based on theoretical analysis.
Although the interpretability of this approach is good, the accuracy of the temperature estimation could be
furthre improved. With the mean errors being acceptable (around 0.5°C), the variance of the errors is very large
(up to 2 ~ 3°C), which might be caused by insufficient data and outliers. Powerful deep learning model may help
to attend to these interference using complex CIR or distances for different paths as input without going through
every possible situation.

8 RELATED WORK

Recent works related to VECTOR are in the following three categories.

Temperature sensors. Nowadays, temperature sensors widely used in daily lives are generally in two types:
physical attributes based sensors [44-47] and optical/infrared sensors [48]. The first type of sensors leverage
temperature-sensitive physical parameters of materials, including resistance [47], fluid expand [44] and etc..
In this case, sensing materials have to be well-heated to exhibit these property and the response delay could
be large, e.g., the mercurial thermometer takes minutes to return the right body temperature. Recently, Yang
et al. proposed a new polydimethylsiloxane/carbon nanotubes based temperature sensor to provide fast and
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accurate body temperature [49]. Caselli et al. designed an integrated temperature sensor for food monitoring
with low power consumption and tiny size [50]. Breda et al. proposed to infer the ambient temperature with
the battery temperature sensor of mobile devices [51]. To improve performance from multiple sensors’ readings,
[52] combines 9 sensors with improved linear regression to predict the temperature of CPU, and [53] performs
deep learning based data fusion to monitor the air temperature distribution of greenhouse. For optical/infrared
thermometers, they detect thermal radiation/black body radiation from objects and infer the temperature [48].
They are fast, contactless, and can infer the temperature from different objects at the same time. Thus, infrared
thermometers are widely used in medical and industry applications [54-56]. Thermal comfort for occupants and
operational characteristics of residual air-conditioners can be inferred from optical temperature sensors [57, 58].
However, optical sensors are often expensive [11] and need LOS path to the target [56], e.g., even a thin cover
could block the heat emission from detection. Acoustic based temperature sensing has advantages of fast response
time, temperature distribution estimation, and low costs compared with these specialized temperature sensors.

Wireless temperature monitoring. Wireless temperature monitoring either use radio signals or acoustic
signals for temperature monitoring. RFIDs are popular for wireless temperature sensing due to their battery-
free and long-range coverage features [13, 14, 59, 60]. However, each RFID can only measure the temperature
at a single location as traditional temperature sensors. Although the price for a single tag is low, the cost of
RFID readers are high compared with acoustic devices. Ha et al. leveraged WiFi signal strength to contactless
classify body temperature, and they can only get a coarse-grained 3-classes result (cool, normal, and warm [61]).
ThermoWave interrogates the cholesteryl materials with millimeter wave and leverage the frequency domain
feature of the bounce back signal to get the single-point temperature and further builds a learning-based model
to infer the temperature distribution [15]. For acoustic-based sensing, Acute uses mobile phones to transmit
and receive acoustic signal on the same device to perform temperature measurement [12, 62]. However, due to
the short distance between speakers and microphones on the same device, Acute only measures temperature
around the device and can only infer coarse-grained room-level temperature distribution using interpolation
on single-point measurements. Guided wave based temperature monitoring model is built for hot section of
aeroengines monitoring with high precision ultrasound sensors [63], however it focuses on the building the
velocity model and simulation and did not provide temperature accuracy result. AcousticThermo transmits and
receives acoustic pulse signal from a synchronized device and leverage the reflection distance from nearby wall
to calculate the changes in sound speed and estimate the temperature in high accuracy (0.2°C) [64]. However,
AcousticThermo requires specified ultrasound sensors operating at 40 kHz, which is not supported by most
COTS devices, and their precision is coupled with the sampling rate because they do not leverage the phase
information. Furthermore, AcousticThermo is unable to estimate the temperature distribution because they
need the device deployed close to a wall and estimate the temperature with single path. Specialized industry
acoustic sensors have been used for temperature measurements in inaccessible areas, e.g., the temperature in a
reaction chamber [65, 66]. With multiple transmitters and receivers, it is also possible to rebuild the temperature
distribution in a given region [67, 68]. However, most of existing systems use specialized and synchronized
transceivers so that they cannot be widely deployed in smart home and environment monitoring scenarios.

Acoustic signal calibration. Acoustic sensing system have been widely used for gesture recognition [69-71],
vital sign monitoring [72-74], and localization [75, 76]. Acoustic ranging systems [36, 77, 78] measures the ToF of
sound signals in a similar way as in VECTOR. These systems use phase-based approach to achieve millimeter-level
tracking accuracy [33, 35, 79, 80]. However, when applied to physically distributed devices, they require user
intervention for calibration, when the devices start playing/recording the sound. Such calibration process often
requires devices to be placed at a fixed location or move along a given trajectory, to estimate the unknown clock
offset [33, 35]. Compared with these systems, VECTOR provides long-term stable ToF measurements without
user intervention. Our system only needs a single calibration under a known temperature during the deployment
phase.
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9 CONCLUSIONS

In this paper, we developed VECTOR, a temperature-field monitoring system, that achieves high temperature
sensing accuracy using commercial sound playing/recording devices. Our system can provide a timely feedback
and temperature distributions over space for the future temperature control systems. We provide two solutions
for temperature distribution measurement: for densely deployed devices, we propose a dRadon algorithm to
reconstruct a fine-grained temperature distribution; for systems with a small number of devices, we ally with
multipaths and get a coarse-grained temperature distribution in different cells. We believe that our system will
be useful in many real-life temperature monitoring/control systems.
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